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Abstract
Bayesian optimization is a technique for efficient global optimization
of black-box unknown functions. In many practical settings, it is
desirable to explicitly incorporate function evaluation costs into acqui-
sition functions used for Bayesian optimization. To do so, we develop
a connection between cost-aware Bayesian optimization and Pan-
dora’s Box, a decision problem from economics. The Pandora’s Box
problem admits a Bayesian-optimal solution based on an expression
called the Gittins index, which can be reinterpreted as an acquisition
function. We demonstrate empirically that this acquisition function
performs well on cost-aware Bayesian optimization, particularly in
medium-high dimensions. We further show that this performance
carries over to classical Bayesian optimization without explicit eval-
uation costs. Our work constitutes a first step towards integrating
techniques from Gittins index theory into Bayesian optimization.

Cost-aware Bayesian Optimization
f(x)

c(x)

objective
function

cost
function

Expected-budget-constrained
(EBC) Bayesian optimization:

E sup
x∈X

f(x) − E max
1≤t≤T

f(xt)

subject to E∑T
t=1 c(xt) ≤ B

Pandora’s BoxPandora’s Box

f(x)

c = 2 c = 1

α⋆: Bayesian-optimal
acquisition function

add correlations and
take continuum limit

incorporate f | y1, .., yt

Bayesian Optimization

f(x)

c(x)

αPBGI
t : acquisition function

proposed in this work

Cost-per-sample (CPS) objective: E max
1≤t≤T

f(xt) − E
T∑
t=1

c(xt)

Optimal policy (notation: EIψ(x; y) = Emax(0, ψ(x) − y)):
α⋆(x) = g where g solves EIf (x; g) = c(x)

Our work: EBC and CPS problems are equivalent
(extends prior work on generalized Pandora’s boxes to continuous rewards)

Key difference from Bayesian optimization: no correlations

Pandora’s Box Gittins Index:
a new acquisition function

αPBGI
t (x) = g where g solves EIf |x1:t,y1:t(x; g) = λc(x)

Idea: extend α⋆ by plugging posterior in for f
λ: cost scaling factor from budget-constraint Lagrangian duality

Computation: one-dimensional convex optimization

Where does αPBGI
t come from?

Simplified problem: one
closed and one open box

Decision Value
Open box Emax(f, g) − c

Don’t open g

Should one open the closed box? Depends on the observed value g!
If both opening and not opening are optimal: g is a fair value

αPBGI
t : pick points according to their fair values

Behavior and Comparisons

−3 0 3

0

2

4

St
d.

D
ev

.

Expected
Improvement

−3 0 3

Mean

PBGI
λ = 100

−3 0 3

PBGI
λ = 10−5

0 50 100 150 200

100

5 ·100

Cumulative Cost

Log Regret
λ = 10−2

λ = 10−3

λ = 10−4

λ = 10−5

Dynamic λ

Large λ: similar to αEI
t Small λ: similar to αUCB

t

−3

−1

1

3

5

Po
st

er
io

r

Expected Improvement

−3

−1

1

3

5

Large-λ PBGI

−3

−1

1

3

5

Small-λ PBGI

0 0.25 0.5 0.75 1

−0.1
0.4
0.9

A
cq

ui
si

tio
n

0 0.25 0.5 0.75 1

−2
−1
0
1

0 0.25 0.5 0.75 1

−1
4
9

Performance

0 50 100 150 200

100

5 ·100
d = 8

0 100 200 300 400

100

7 ·100
d = 16

0 200 400 600 800

8 ·100

9 ·100
d = 32

0 100 200 300 400

100

5 ·100

0 200 400 600 800

2 ·100

7 ·100

0 200 400 600 800

3 ·100

101

LogEI(PC) (B)MSEI (MF)MES TS UCB
KG LogEICC PBGI PBGI-D RS

75th quantile
Median
25th quantile

L
og

R
eg

re
t

Cumulative Cost

U
niform

-cost
V

arying-cost

0 40 80 120 160

10−1

100

Ackley

0 40 80 120 160

101

102
Levy

0 40 80 120 160

103
104
105

Rosenbrock

0 100 200 300 400

3 ·10−1

100

4 ·100

0 100 200 300 400

101

102

0 100 200 300 400

104
105

LogEI(PC) (B)MSEI (MF)MES TS UCB
KG LogEICC PBGI PBGI-D RS

75th quantile
Median
25th quantile

L
og

R
eg

re
t

Cumulative Cost

U
niform

-cost
V

arying-cost

0 25 50 75 100

−17
−16
−15
−14

Pest Control

0 50 100 150 200

0
100
200
300

Lunar Lander

0 50 100 150 200

−111/4
−111/2
−113/4

−12

Robot Pushing

0 200 400 600 800

−17
−16
−15
−14

0 1600 3200

0
100
200
300

0 200 400 600 800

−12
−111/2

−11
−101/2

LogEI(PC) (B)MSEI (MF)MES TS UCB
KG LogEICC PBGI PBGI-D RS

75th quantile
Median
25th quantile

B
es

tO
bs

er
ve

d
V

al
ue

Cumulative Cost

U
niform

-cost
V

arying-cost

Computation Time

0 10 20 30 40

0

100

200

300

R
un

tim
e

d = 4

0 20 40 60 80

0

200

400

600

Cumulative Cost

d = 8

0 40 80 120 160

0

400

800

1,200
d = 16

LogEI MSEI PBGI TS KG
75th quantile
Median
25th quantile



Cost-aware Stopping for Bayesian Optimization
Qian Xie,*1 Linda Cai,*2 Alexander Terenin,1 Peter Frazier,1 and Ziv Scully1

1Cornell University 2University of California, Berkeley

Abstract
In automated machine learning, scientific discovery, and other appli-
cations of Bayesian optimization, deciding when to stop evaluating
expensive black-box functions is an important practical consideration.
While several adaptive stopping rules have been proposed, in the cost-
aware setting they lack guarantees ensuring they stop before incurring
excessive function evaluation costs. We propose a cost-aware stopping
rule for Bayesian optimization that adapts to varying evaluation costs
and is free of heuristic tuning. Our rule is grounded in a theoreti-
cal connection to state-of-the-art cost-aware acquisition functions,
namely the Pandora’s Box Gittins Index (PBGI) and log expected
improvement per cost. We prove a theoretical guarantee bounding
the expected cumulative evaluation cost incurred by our stopping rule
when paired with these two acquisition functions. In experiments on
synthetic and empirical tasks, including hyperparameter optimization
and neural architecture size search, we show that combining our stop-
ping rule with the PBGI acquisition function consistently matches or
outperforms other acquisition-function–stopping-rule pairs in terms
of cost-adjusted simple regret, a metric capturing trade-offs between
solution quality and cumulative evaluation cost.

Cost-aware Bayesian Optimization
f(x)

c(x)

objective
function

cost
function

Cost-adjusted simple regret: min
1≤t≤τ

f(xt) − inf
x∈X

f(x)︸ ︷︷ ︸
simple regret

+
τ∑

t=1
c(xt)︸ ︷︷ ︸

cumulative cost

Goal: Adaptively select evaluations x1, x2, . . . and stop at time τ to
minimize the expected cost-adjusted simple regret.

Existing Adaptive Stopping Rules
Simple heuristics: stop when the best observed value remains un-
changed or improvement is not statistically significant.
Acquisition-based: stop when PI, EI or KG falls below a threshold.
Regret-based: stop when regret bounds drop below a threshold (with
some probability) such as in UCB-LCB.

PBGI/LogEIPC Stopping Rule
EI stopping rule. Stop when the expected improvement is no
longer worth the unit cost: αEI

t (x; y∗
1:t) ≤ c.

PBGI/LogEIPC stopping rule (this work). Stop when the
Gittins index at every unevaluated point is at least the current best
observed value:

min
x∈X\{x1,...,xt}

αPBGI
t (x) ≥ y∗

1:t ⇔ max
x∈X\{x1,...,xt}

αLogEIPC
t (x; y∗

1:t) ≤ 0.

Result (Weitzman, 1979). Under the independent-value setting, it is
Bayesian-optimal when paired with the PBGI acquisition function.

Behavior Illustration

0.0 0.2 0.4 0.6 0.8 1.0

0

2

G
P 

m
od

el

0.0 0.2 0.4 0.6 0.8 1.010

0

10

Lo
gE

IP
C

 a
cq

next point Threshold (0.0)

0.0 0.2 0.4 0.6 0.8 1.0
2.5

0.0

2.5

PB
G

I a
cq

next point Threshold (current best)

(a) c(x) ≡ 0.1
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(b) c(x) ≡ 0.0001

Theoretical Guarantee
Theorem 1 (No worse than stopping-immediately)
When optimizing a random function f with constant prior mean,
using PBGI or LogEIPC with our stopping rule achieves cost-adjusted
regret no worse than stopping immediately after the initial evaluation.

E
[
y∗

1:τ − min
x∈X

f(x) +
τ∑

t=1
c(xt)

]
≤ E

[
y1 − min

x∈X
f(x) + c(x1)

]
.

Key proof idea: Using our stopping rule, both PBGI and LogEIPC
are guaranteed to evaluate only points whose one-step expected
improvement is worth the evaluation cost before stopping.
Implication: Matches the best we can hope for in the worst case,
and avoids over-spending — properties many cost-unaware rules lack.

Performance
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