Abstract

Bayesian optimization is a technique for efficient global optimization
of black-box unknown functions. In many practical settings, it is
desirable to explicitly incorporate function evaluation costs into acqui-
sition functions used for Bayesian optimization. To do so, we develop
a connection between cost-aware Bayesian optimization and Pan-
dora’s Boz, a decision problem from economics. The Pandora’s Box
problem admits a Bayesian-optimal solution based on an expression
called the Gittins index, which can be reinterpreted as an acquisition
function. We demonstrate empirically that this acquisition function
performs well on cost-aware Bayesian optimization, particularly in
medium-high dimensions. We further show that this performance
carries over to classical Bayesian optimization without explicit eval-
uation costs. Our work constitutes a first step towards integrating
techniques from Gittins index theory into Bayesian optimization.

Cost-aware Bayesian Optimization

objective #(x)
function

cost

function ~ * c(z) — ~—0n_ __— —~—___
Esup f(2) - E max f(z)

zeX <t<T

subject to EYL | ¢(z,) < B

Expected-budget-constrained
(EBC) Bayesian optimization:

Pandora’s Box

Mpsfna)l f

c=2 c=1 -
]Emaxfxt EZC

<
<t<T =1

Cost-per-sample (CPS) objective:

Optimal policy (notation: EL,(z;y) = Emax(0,¢(x) — y)):

af(z)=yg where g solves El¢(z;9) = c(x)

Our work: EBC and CPS problems are equivalent
(extends prior work on generalized Pandora’s boxes to continuous rewards)

Key difference from Bayesian optimization: no correlations
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Pandora’s Box Gittins Index:
a new acquisition function

a, (x) =g where g solves  Elyjg,, .. (23 9) = Ac(x)

Idea: extend a* by plugging posterior in for f
A: cost scaling factor from budget-constraint Lagrangian duality
Computation: one-dimensional convex optimization

PBGI

Where does o come from?

Simplified problem: one

closed and one open box ®
Decision Value f > 0 g

Open box Emax(f,g9) —c
Don’t open g c

Should one open the closed box? Depends on the observed value ¢!

If both opening and not opening are optimal: ¢ is a fair value

afBCL: pick points according to their fair values

Behavior and Comparisons
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Abstract

In automated machine learning, scientific discovery, and other appli-
cations of Bayesian optimization, deciding when to stop evaluating
expensive black-box functions is an important practical consideration.
While several adaptive stopping rules have been proposed, in the cost-
aware setting they lack guarantees ensuring they stop before incurring
excessive function evaluation costs. We propose a cost-aware stopping
rule for Bayesian optimization that adapts to varying evaluation costs
and is free of heuristic tuning. Our rule is grounded in a theoreti-
cal connection to state-of-the-art cost-aware acquisition functions,
namely the Pandora’s Box Gittins Index (PBGI) and log expected
improvement per cost. We prove a theoretical guarantee bounding
the expected cumulative evaluation cost incurred by our stopping rule
when paired with these two acquisition functions. In experiments on
synthetic and empirical tasks, including hyperparameter optimization
and neural architecture size search, we show that combining our stop-
ping rule with the PBGI acquisition function consistently matches or
outperforms other acquisition-function—stopping-rule pairs in terms
of cost-adjusted simple regret, a metric capturing trade-offs between
solution quality and cumulative evaluation cost.

Cost-aware Bayesian Optimization
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Cost-adjusted simple regret: uin flze) — ;gf( f(x)+ ; c(xy)

~—
cumulative cost

simple regret

Goal: Adaptively select evaluations 1, x9,... and stop at time 7 to
minimize the expected cost-adjusted simple regret.

Existing Adaptive Stopping Rules

Simple heuristics: stop when the best observed value remains un-
changed or improvement is not statistically significant.
Acquisition-based: stop when PI, EI or KG falls below a threshold.

Regret-based: stop when regret bounds drop below a threshold (with
some probability) such as in UCB-LCB.

PBGI/LogEIPC Stopping Rule

EI stopping rule. Stop when the expected improvement is no
longer worth the unit cost: a(z;y5,) < c.

PBGI/LogEIPC stopping rule (this work). Stop when the
Gittins index at every unevaluated point is at least the current best
observed value:

min af’BGI (27) Z yik:t A a%OgEIPC (xv yT:t) S 0

IEX\{JJl,...,&?t}

Result (Weitzman, 1979). Under the independent-value setting, it is
Bayesian-optimal when paired with the PBGI acquisition function.

max
zeX\{z1,...,xt}

Behavior lllustration
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Theoretical Guarantee

Theorem 1 (No worse than stopping-immediately)

When optimizing a random function f with constant prior mean,
using PBGI or LogEIPC with our stopping rule achieves cost-adjusted
regret no worse than stopping immediately after the initial evaluation.

<E {yl —min f(2) + c(a1)|

E yT:T - mlnf(:lr) + Z C(xt)
zeX —1

Key proof idea: Using our stopping rule, both PBGI and LogEIPC
are guaranteed to evaluate only points whose one-step expected
improvement is worth the evaluation cost before stopping.

Implication: Matches the best we can hope for in the worst case,
and avoids over-spending — properties many cost-unaware rules lack.

Cost-Adjusted Regret

Cost-adjusted Regret
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Cost-aware Stopping for Bayesian Optimization
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