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Abstract
In automated machine learning, scientific discovery, and other appli-
cations of Bayesian optimization, deciding when to stop evaluating
expensive black-box functions is an important practical consideration.
While several adaptive stopping rules have been proposed, in the cost-
aware setting they lack guarantees ensuring they stop before incurring
excessive function evaluation costs. We propose a cost-aware stopping
rule for Bayesian optimization that adapts to varying evaluation costs
and is free of heuristic tuning. Our rule is grounded in a theoreti-
cal connection to state-of-the-art cost-aware acquisition functions,
namely the Pandora’s Box Gittins Index (PBGI) and log expected
improvement per cost. We prove a theoretical guarantee bounding
the expected cumulative evaluation cost incurred by our stopping rule
when paired with these two acquisition functions. In experiments on
synthetic and empirical tasks, including hyperparameter optimization
and neural architecture size search, we show that combining our stop-
ping rule with the PBGI acquisition function consistently matches or
outperforms other acquisition-function–stopping-rule pairs in terms
of cost-adjusted simple regret, a metric capturing trade-offs between
solution quality and cumulative evaluation cost.

Cost-aware Bayesian Optimization
f(x)

c(x)

objective
function

cost
function

Cost-adjusted simple regret: min
1≤t≤τ

f(xt) − inf
x∈X

f(x)︸ ︷︷ ︸
simple regret

+
τ∑

t=1
c(xt)︸ ︷︷ ︸

cumulative cost

Goal: Adaptively select evaluations x1, x2, . . . and stop at time τ to
minimize the expected cost-adjusted simple regret.

Existing Adaptive Stopping Rules
Simple heuristics: stop when the best observed value remains un-
changed or improvement is not statistically significant.
Acquisition-based: stop when PI, EI or KG falls below a threshold.
Regret-based: stop when regret bounds drop below a threshold (with
some probability) such as in UCB-LCB.

PBGI/LogEIPC Stopping Rule
EI stopping rule. Stop when the expected improvement is no
longer worth the unit cost: αEI

t (x; y∗
1:t) ≤ c.

PBGI/LogEIPC stopping rule (this work). Stop when the
Gittins index at every unevaluated point is at least the current best
observed value:

min
x∈X\{x1,...,xt}

αPBGI
t (x) ≥ y∗

1:t ⇔ max
x∈X\{x1,...,xt}

αLogEIPC
t (x; y∗

1:t) ≤ 0.

Result (Weitzman, 1979). Under the independent-value setting, it is
Bayesian-optimal when paired with the PBGI acquisition function.

Behavior Illustration
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(a) c(x) ≡ 0.1
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(b) c(x) ≡ 0.0001

Theoretical Guarantee
Theorem 1 (No worse than stopping-immediately)
When optimizing a random function f with constant prior mean,
using PBGI or LogEIPC with our stopping rule achieves cost-adjusted
regret no worse than stopping immediately after the initial evaluation.

E
[
y∗

1:τ − min
x∈X

f(x) +
τ∑

t=1
c(xt)

]
≤ E

[
y1 − min

x∈X
f(x) + c(x1)

]
.

Key proof idea: Using our stopping rule, both PBGI and LogEIPC
are guaranteed to evaluate only points whose one-step expected
improvement is worth the evaluation cost before stopping.
Implication: Matches the best we can hope for in the worst case,
and avoids over-spending — properties many cost-unaware rules lack.

Performance
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