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ML model training:
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Deployment

Training

non-analytical & 
no gradient info

Black-box optimization:
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Input 𝑥 Performance metric 𝑓(𝑥)

Accuracy

ML model training:

Revenue

Adaptive experimentation:
Deployment

Training

Training time

Compute credits

Operational cost
User experience

expensive-to-evaluate

Training hyperparameters
(e.g., learning rate, # layers)

Decision/design variables
(e.g., layout, pricing level)
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Input 𝑥 Performance metric 𝑓(𝑥)

expensive-to-evaluate

Fewer #evaluations

High-level goal: Choose 𝑥!, … , 𝑥" to maximize the expected best observed value
𝔼 max
#$!,&,…,"

	𝑓 𝑥#

Efficient framework: Bayesian optimization

adaptively
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Model belief
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Probabilistic model
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(Bayes’ rule)
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Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)

𝑥!, … , 𝑥#(! 𝑓 𝑥! , … , 𝑓(𝑥#(!)

Time 𝑡 + 1

Acquisition function
(e.g., EI, UCB, TS) scoring (worth 

of each point

Acquire next input
(gradient-based 
optimization)
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𝑥 𝑓(𝑥)

Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)

My focus
Acquisition function

(e.g., EI, UCB, TS) scoring (worth 
of each point

Acquire next input
(gradient-based 
optimization)
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Under-explored Side Info and Flexibility
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What is Pandora’s Box?
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Features in Pandora’s box

Features in Pandora’s box

Features in Markovian bandits

Optimal in related sequential 
decision problems

⋯ ⋯ ⋯

New design principle: 
Gittins index
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Pandora’s Box
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Flexible stopping time

High-level goal: Choose box 𝑥!, … , 𝑥" to open to maximize the expected utility

𝔼 max
#$!,&,…,"

	𝑓 𝑥# − 𝔼7
#$!

"

𝑐(𝑥#)
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𝑡 = 𝑇, stop
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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Continuous Discrete

Correlated Independent

Fixed-iteration Flexible-stopping

Expected best-observed value 
𝔼 max
%&",#,…,)

	𝑓(𝑥%)
Expected utility 

𝔼 max
%&",#,…,)

	𝑓 𝑥% − 𝔼7
%&"

)

𝑐(𝑥%)
cumulative cost
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Continuous Discrete

Correlated Independent

Fixed-iteration Flexible-stopping
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Continuous Discrete

Correlated Independent

Fixed-iteration Flexible-stopping

Expected regret 
𝔼max
*∈𝒳

𝑓 𝑥 − 𝔼 max
%&",#,…,)

	𝑓(𝑥%)
Expected cost-adjusted regret 
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*∈𝒳
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Continuous Discrete

Correlated Independent
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Expected (cost-adjusted) regret Expected cost-adjusted regret
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Correlated Independent
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Expected (cost-adjusted) regret Expected cost-adjusted regret

Optimal policy: Gittins index
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𝑐(𝑥)

𝑔
𝑓(𝑥)

GI)(𝑥; 𝑐(𝑥)) 𝑔

Step 1: Assign each box a Gittins index (higher is better)

Optimal Policy: Gittins Index

11/8/25 Qian Xie (Cornell ORIE)
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𝑓(𝑥#)𝑓(𝑥")

𝑓(𝑥&)𝑓(𝑥!) GI)(𝑥; 𝑐(𝑥)) GI)(𝑥′; 𝑐(𝑥′))

Step 2: Open the box with highest index if it is closed

Optimal Policy: Gittins Index
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𝑓(𝑥*) 𝑓(𝑥&)𝑓(𝑥!) GI)(𝑥; 𝑐(𝑥))

𝑓(𝑥$) 𝑓(𝑥#)𝑓(𝑥")

Step 2’: Select the box with highest index if it is opened and stop

Optimal Policy: Gittins Index
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Optimal Policy: Gittins Index

11/8/25 Qian Xie (Cornell)

Varying evaluation costs   
  

 Smart stopping time
  

 
  

Gittins index GI(𝑥)

GI 𝑥; 𝑐 𝑥

max
+
	GI 𝑥; 𝑐 𝑥 ≤ max

+
	𝑓(𝑥)



Continuous Discrete

Correlated Independent

Fixed-budget / Flexible-stopping Flexible-stopping

Expected (cost-adjusted) regret Expected cost-adjusted regret

Is Gittins index good? Gittins index is optimal
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Our Contribution: Gittins Index Principle
• Improvement-based (e.g., LogEIPC)
•Entropy-based
•Confidence bounds (UCB/LCB)
•Thompson sampling (TS)
•Gittins Index (PBGI)
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Why another principle?
1. Naturally incorporates side info and practical flexibility
2. Performs competitively on benchmarks
3. Comes with theoretical guarantees
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Gittins Index vs Baselines on AutoML Benchmark
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Ours

Bound on achievable performance

Lower the better
Ours
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Correlated Independent
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]

11/8/25 Qian Xie (Cornell ORIE)

theoretically



Our Contribution: Gittins Index Principle
• Improvement-based (e.g., LogEIPC)
•Entropy-based
•Confidence bounds 
•Thompson sampling
•Gittins Index

11/8/25 Qian Xie (Cornell ORIE) 53

Why another principle?
1. Naturally incorporates side info and practical flexibility
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3. Comes with theoretical guarantees
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Theoretical Guarantee and Empirical Validation
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𝔼 𝑅 ours; PBGI ≤ 𝑅 stopping	immediately

Implication: 
• Matches the best achievable performance in 
the worst case (evaluations are all very costly). 

• Avoids over-spending — a property many 
cost-unaware stopping rules lack.

Theorem (No worse than stopping-immediately)

or LogEIPC cost-adjusted regret

Stopping-immediately



"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.
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Studied problem Key idea

Impact Ongoing work

Varying evaluation costs Link to Pandora’s Box problem 
& Gittins index theory

Competitive empirical performance & 
interests from practitioners

Sharper theoretical guarantees & black-
box optimization w/ multi-stage feedback

⋯ ⋯ ⋯

11/8/25 Qian Xie (Cornell ORIE)

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

Adaptive stopping time
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Studied problem Key idea

Impact Ongoing work

Varying evaluation costs Link to Pandora’s Box problem 
& Gittins index theory

Competitive empirical performance & 
interests from practitioners LLM-driven black-box optimization

⋯ ⋯ ⋯

11/8/25 Qian Xie (Cornell ORIE)

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

Adaptive stopping time



Recap: Bayesian Optimization
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𝑥 𝑓(𝑥)

Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)

Acquisition function
(e.g., EI, UCB, TS)

Acquire next input
(gradient-based 
optimization)



Ongoing: LLM-Driven Black-Box Optimization
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𝑥 𝑓(𝑥)

Black-box function

Probabilistic model
(e.g., autoregressive model)

Update belief
(feedback-augmented 

context)

Acquire next input
(LLM proposal)

Acquisition function
(e.g., Softmax sampling)

Joint work with Yu Yu and Li Jin (SJTU)



Ongoing: LLM-Driven Black-Box Optimization

11/8/25 Qian Xie (Cornell ORIE) 59

𝑥 𝑓(𝑥)

Black-box function

Update belief
(feedback-augmented 

context)

Large language model

Acquire next input
(LLM proposal)

Joint work with Yu Yu and Li Jin (SJTU)
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(e.g., Transformer config)
RL state representation Average speed

Update belief
(feedback-augmented 

context)

Large language model

Black-box function
(RL training & evaluation)

Mixed-autonomy traffic control:

Acquire next input
(LLM proposal)

Joint work with Yu Yu and Li Jin (SJTU)
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(e.g., Transformer config)
RL state representation Average speed

Update belief
(feedback-augmented 

context)

Large language model

Black-box function
(RL training & evaluation)

Mixed-autonomy traffic control:

Can side info help?

Acquire next input
(LLM proposal)

Joint work with Yu Yu and Li Jin (SJTU)



Our LLM-Driven Method: Incorporate Side Info
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Update belief
(feedback-augmented 

context)

Large language model

Mixed-autonomy traffic control:

Average speed

Acquire next input
(LLM proposal)

performance metric + 
representation quality

(e.g., Transformer config)
RL state representation

Black-box function
(RL training & evaluation)

Joint work with Yu Yu and Li Jin (SJTU)
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"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.
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Find our papers on arXiv!

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.


