NeurIPS'24 & INFORMS Data

Mining Paper Competition Finalist

Cost-Aware Bayesian Optimization with Adaptive Stopping via Gittins Indices

Qian Xie 谢倩 (Cornell ORIE)

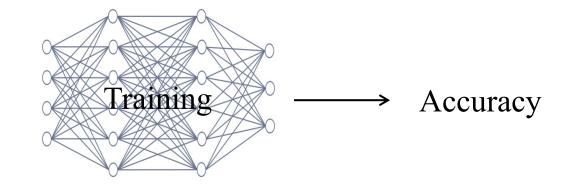
Joint work with Linda Cai (UC Berkeley), Theodore Brown (UCL), Raul Astudillo (MBZUAI), Peter Frazier, Alexander Terenin, and Ziv Scully (Cornell)

INFORMS Annual Meeting 2025 Job Market Showcase

Optimization Under Uncertainty

ML model training:

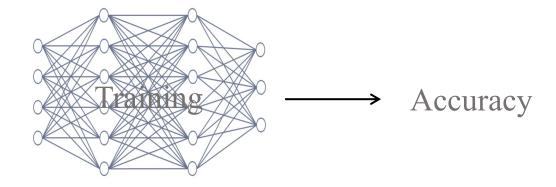
Training hyperparameters (e.g., learning rate, # layers)



Optimization Under Uncertainty

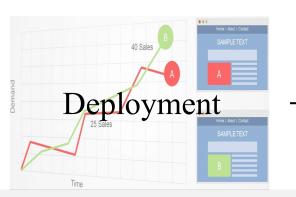
ML model training:

Training hyperparameters (e.g., learning rate, # layers)



Adaptive experimentation:

Decision/design variables ——
(e.g., layout, pricing level)

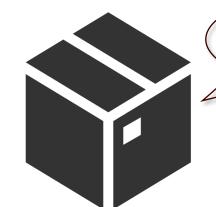


Revenue

Optimization Under Uncertainty

Black-box optimization:

Input *x*

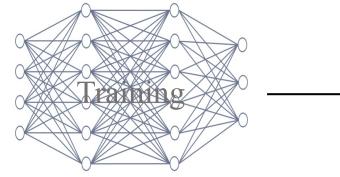


non-analytical & no gradient info

Performance metric f(x)

ML model training:

Training hyperparameters (e.g., learning rate, # layers)



Accuracy

Adaptive experimentation:

Decision/design variables (e.g., layout, pricing level)

Revenue

Black-Box Optimization

Input $x \longrightarrow$

expensive-to-evaluate

 \rightarrow Performance metric f(x)

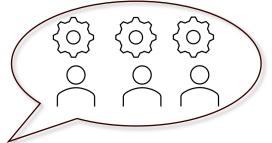
ML model training:

Training hyperparameters (e.g., learning rate, # layers)

Training time

Compute credits

----- Accuracy



Revenue

Operational cost User experience

Adaptive experimentation:

Decision/design variables

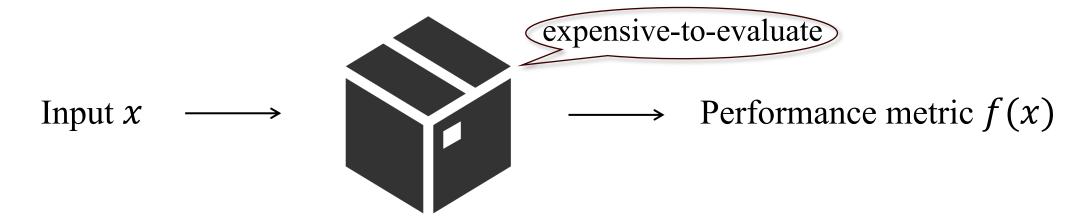
(e.g., layout, pricing level)

Black-Box Optimization



High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Data-Driven Black-Box Optimization



High-level goal: Choose x_1, \dots, x_T to maximize the expected best observed value

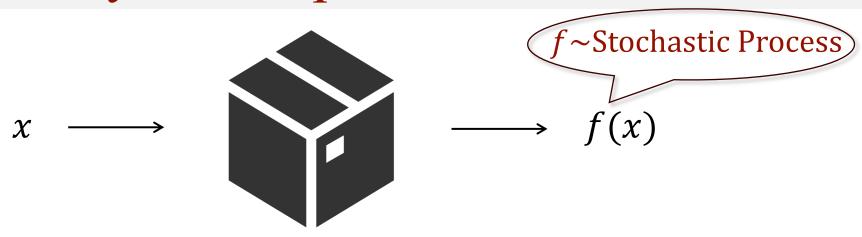
$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Data-Driven Black-Box Optimization

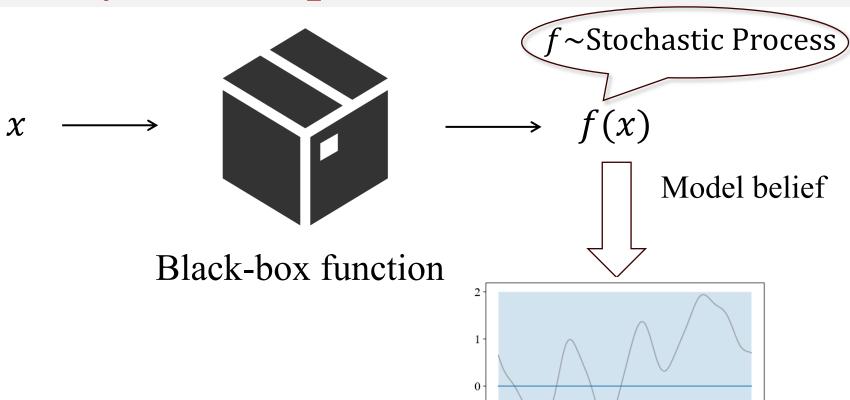
adaptively

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Efficient framework: Bayesian optimization



Black-box function



Probabilistic model

0.6

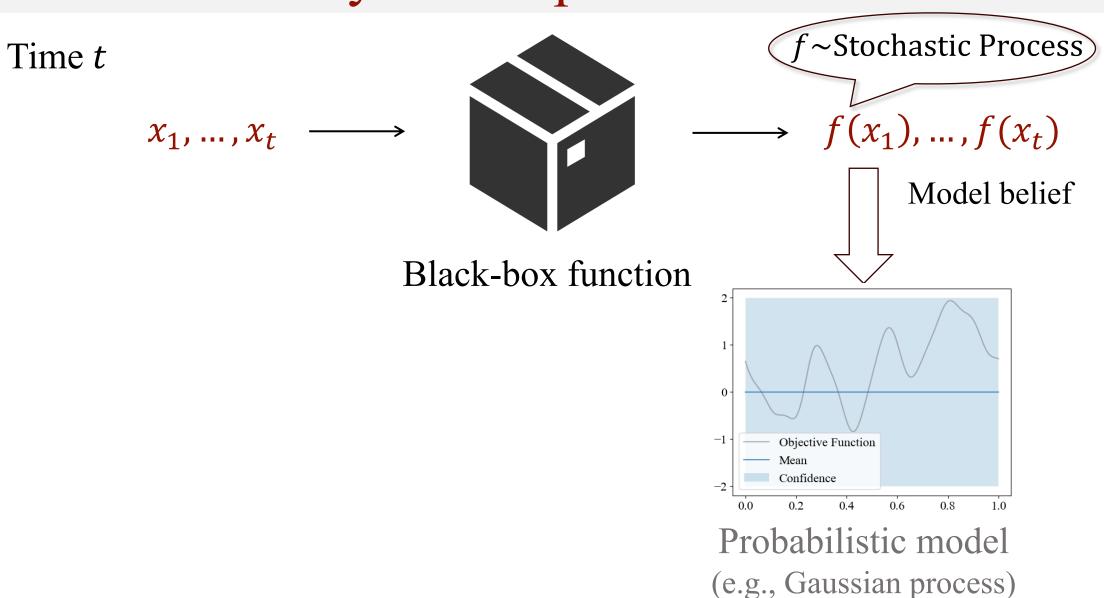
0.4

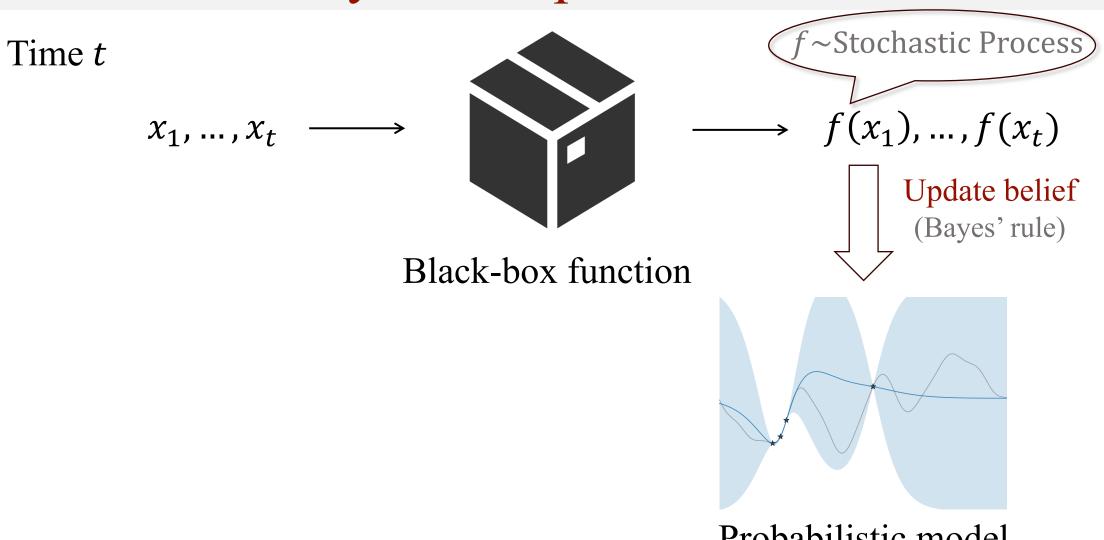
Objective Function

Mean Confidence

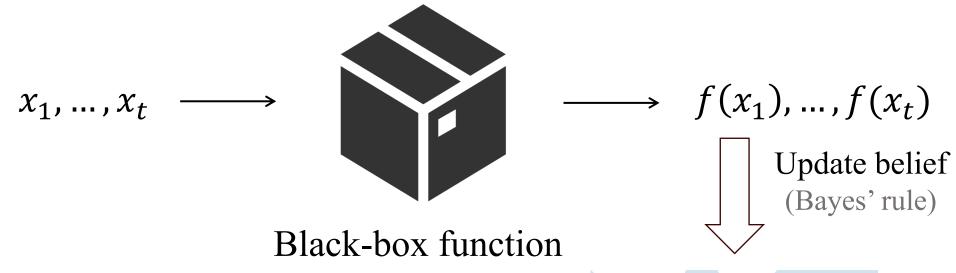
0.2

(e.g., Gaussian process)



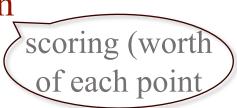


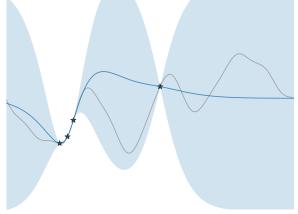
Probabilistic model (e.g., Gaussian process)



Acquisition function

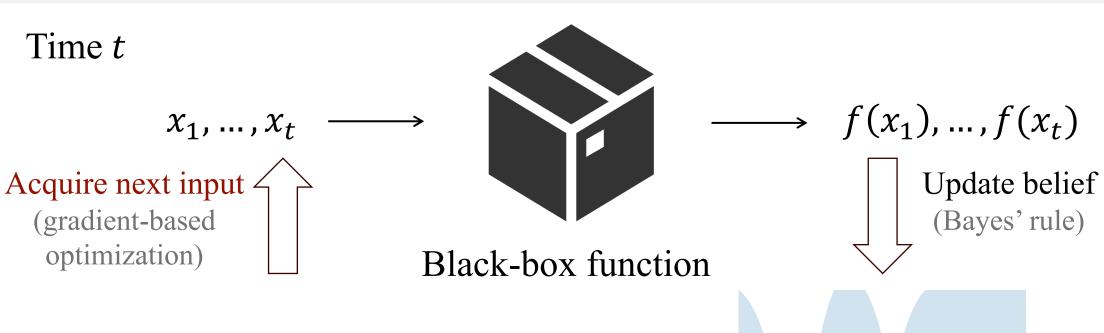
(e.g., EI, UCB, TS)





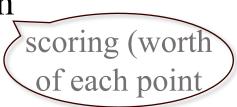
Probabilistic model

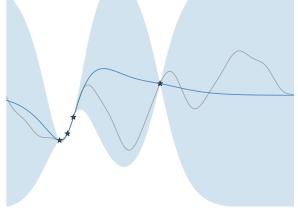
(e.g., Gaussian process)



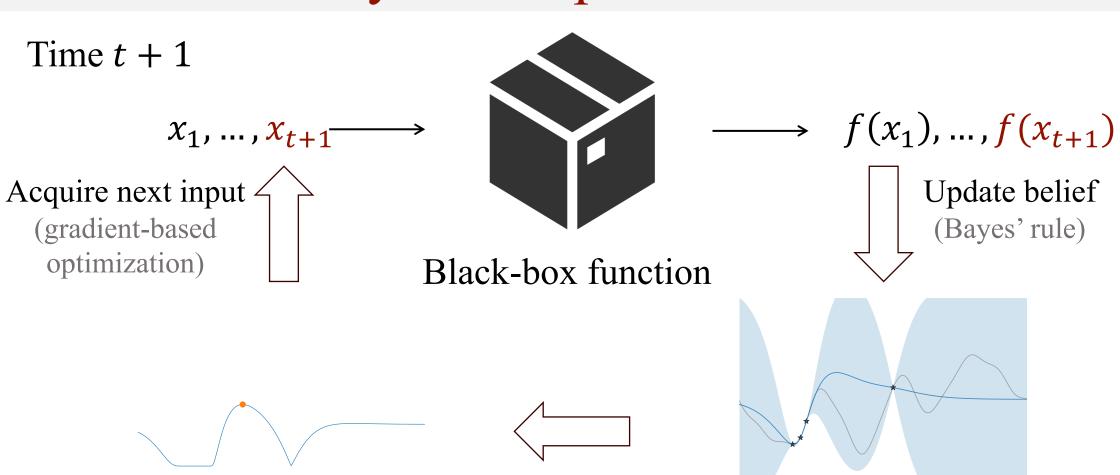
Acquisition function

(e.g., EI, UCB, TS)



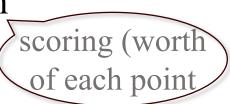


Probabilistic model (e.g., Gaussian process)

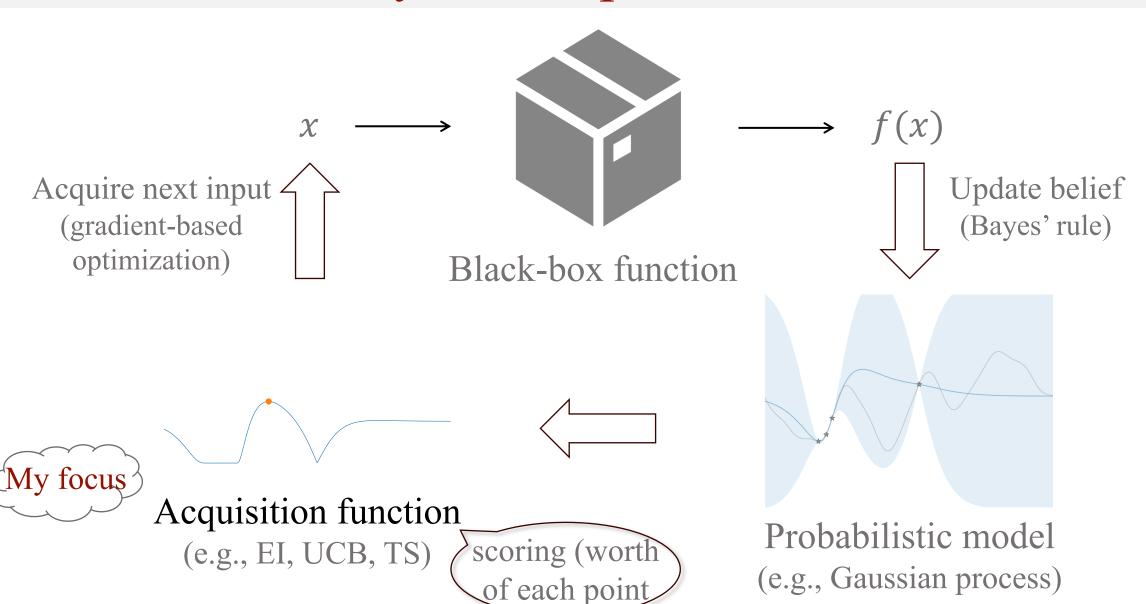


Acquisition function

(e.g., EI, UCB, TS)



Probabilistic model (e.g., Gaussian process)



15

Existing Design Principles

- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)

16

New Design Principle: Gittins Index

- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index

New Design Principle: Gittins Index

- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index

Our Contribution: Gittins Index Principle

- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index

- 1. Naturally incorporates side info and practical flexibility
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

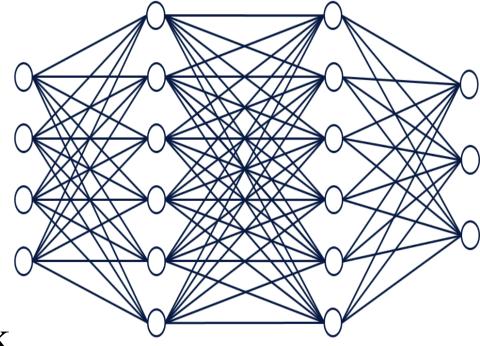
Our Contribution: Gittins Index Principle

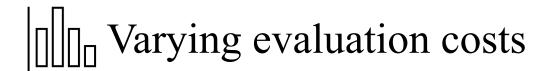
- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index

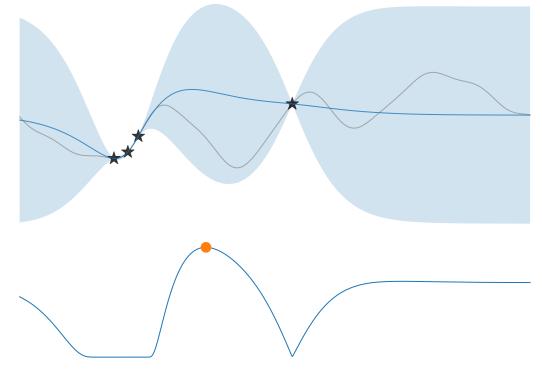
- 1. Naturally incorporates side info and practical flexibility
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Under-explored Side Info and Flexibility

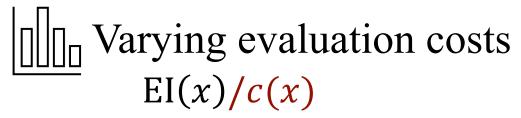
Observable multi-stage feedback



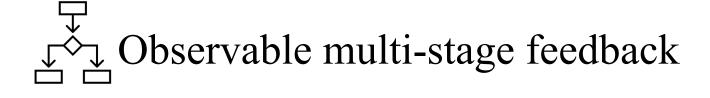


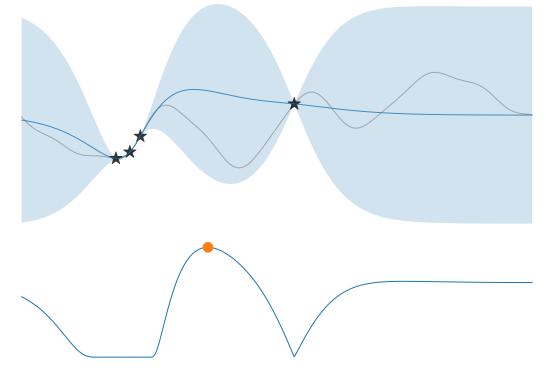


Expected improvement EI(x)

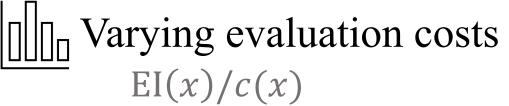


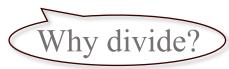
Smart stopping time





Expected improvement EI(x)

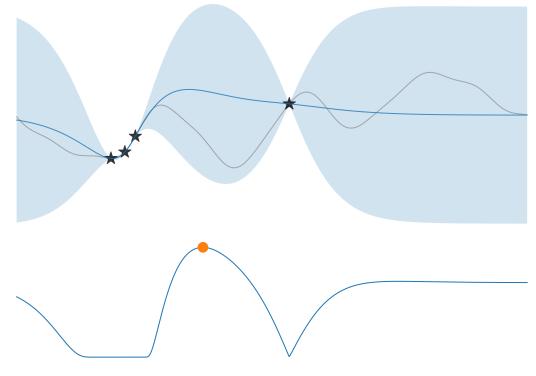




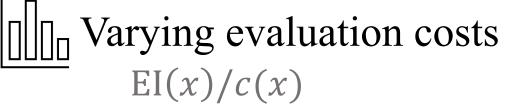
Smart stopping time

$$EI(x) \leq \theta$$

Observable multi-stage feedback



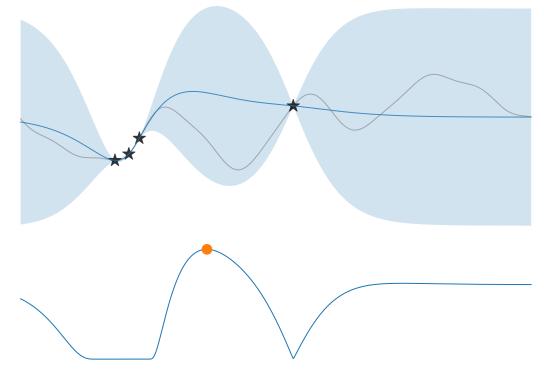
Expected improvement EI(x)



Smart stopping time

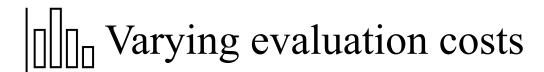
$$\mathrm{EI}(x) \leq \theta$$

Observable multi-stage feedback



Expected improvement EI(x)

Under-explored Side Info and Flexibility



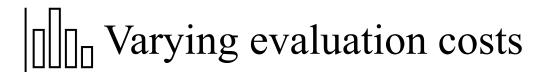
Observable multi-stage feedback

New design principle:
Gittins index

Smart stopping time

Observable multi-stage feedback

New design principle: Gittins index



Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems



Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Varying evaluation costs

Features in Pandora's box

Smart stopping time

Features in Pandora's box

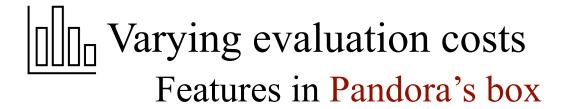
Observable multi-stage feedback

Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

What is Pandora's Box?



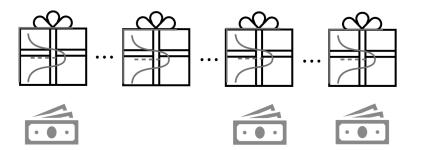
Smart stopping time

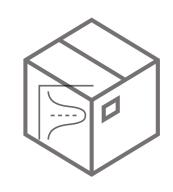
Features in Pandora's box

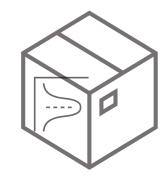
Observable multi-stage feedback Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems



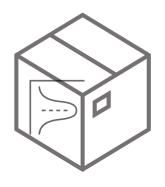


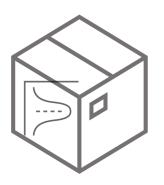


High-level goal: Choose box $x_1, ..., x_T$ to open to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$
Flexible stopping time

$$t = 0$$

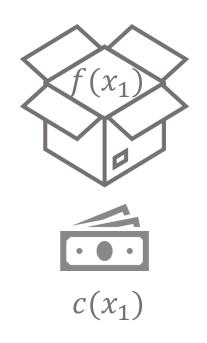


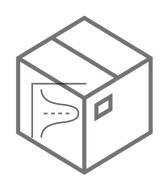


High-level goal: Choose box $x_1, ..., x_T$ to open to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 1$$

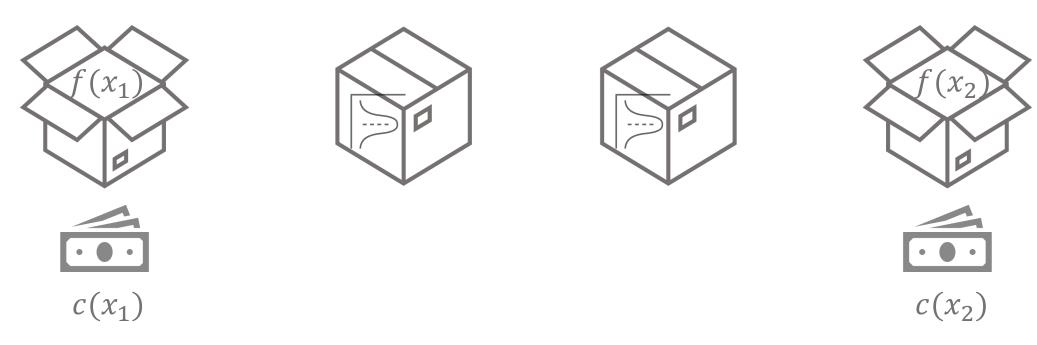




High-level goal: Choose box $x_1, ..., x_T$ to open to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{I} c(x_t)$$

$$t = 2$$

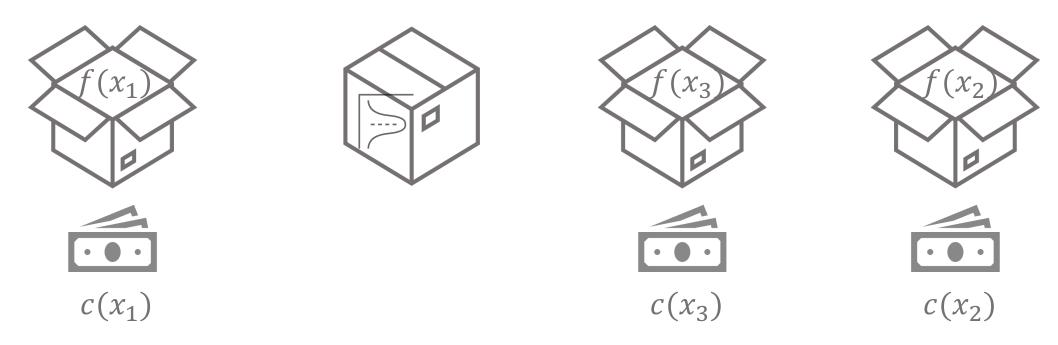


High-level goal: Choose box x_1, \dots, x_T to open to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

Pandora's Box

$$t = 3$$

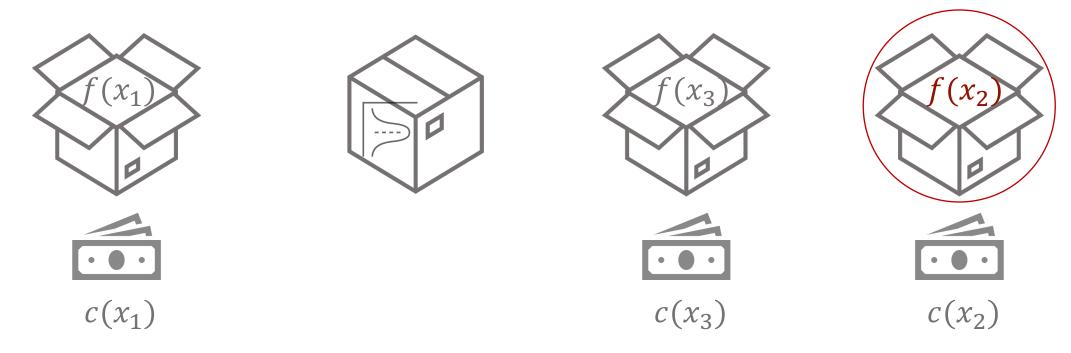


High-level goal: Choose box x_1, \dots, x_T to open to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

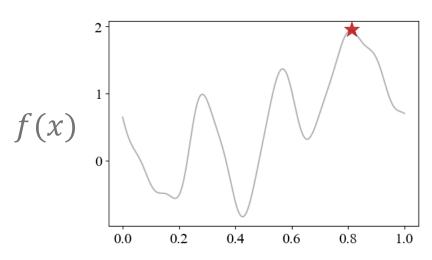
Pandora's Box

t = T, stop



High-level goal: Choose box x_1, \dots, x_T to open to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$



Continuous

Correlated

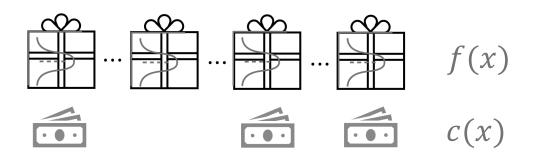
Fixed-iteration

Expected best-observed value

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Pandora's Box

[Weitzman'79]

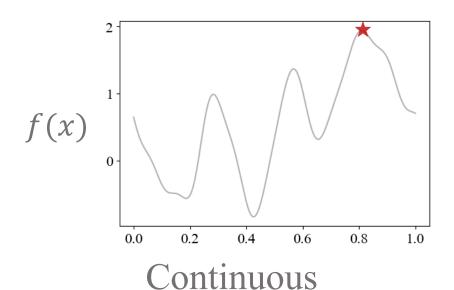


Discrete

Independent

Flexible-stopping

Expected utility $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$



Correlated

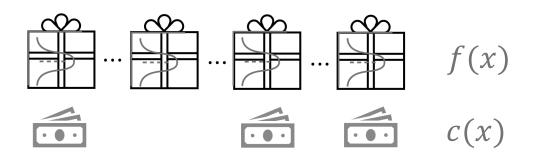
Fixed-iteration

Expected best-observed value

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t)$$

Pandora's Box

[Weitzman'79]



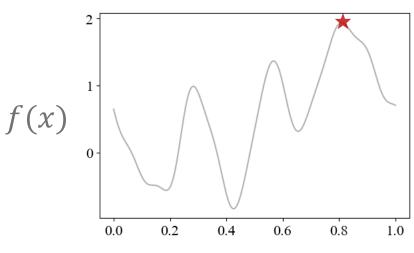
Discrete

Independent

Flexible-stopping

Expected utility cumulative cost $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

39



Continuous

Correlated

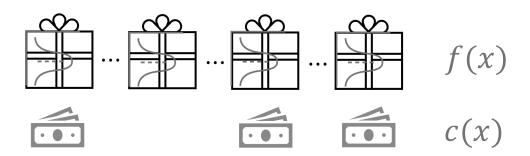
Fixed-iteration

Expected regret

$$\mathbb{E} \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) - \mathbb{E} \max_{t=1,2,\dots,T} f(\mathbf{x}_t)$$

Pandora's Box

[Weitzman'79]

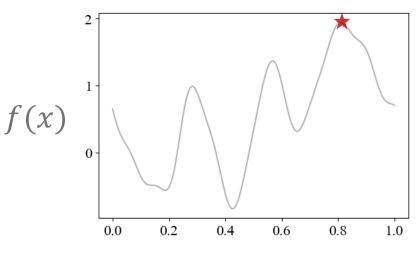


Discrete

Independent

Flexible-stopping

Expected utility cumulative cost
$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$



Continuous

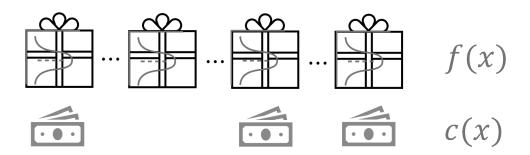
Correlated

Fixed-iteration

Expected regret $\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$

Pandora's Box

[Weitzman'79]



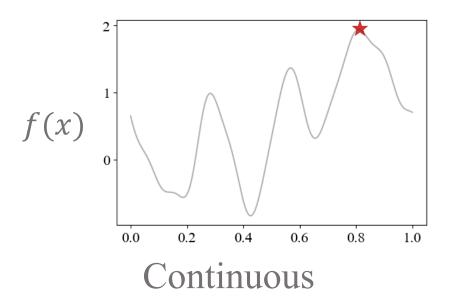
Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

$$\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,\dots,T} f(x_t) + \mathbb{E} \sum_{t=1}^{T} c(x_t)$$
 cumulative cost



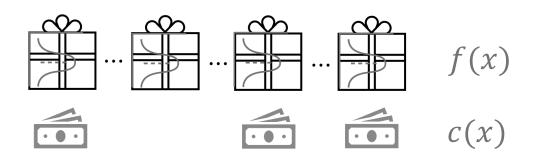
Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Pandora's Box

[Weitzman'79]

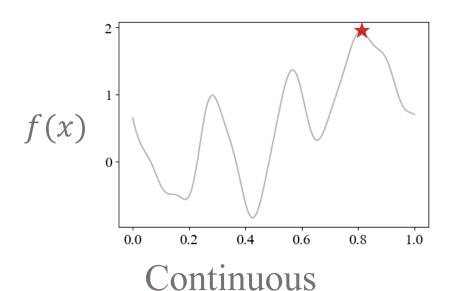


Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret



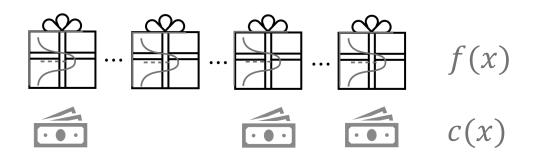
Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Pandora's Box

[Weitzman'79]



Discrete

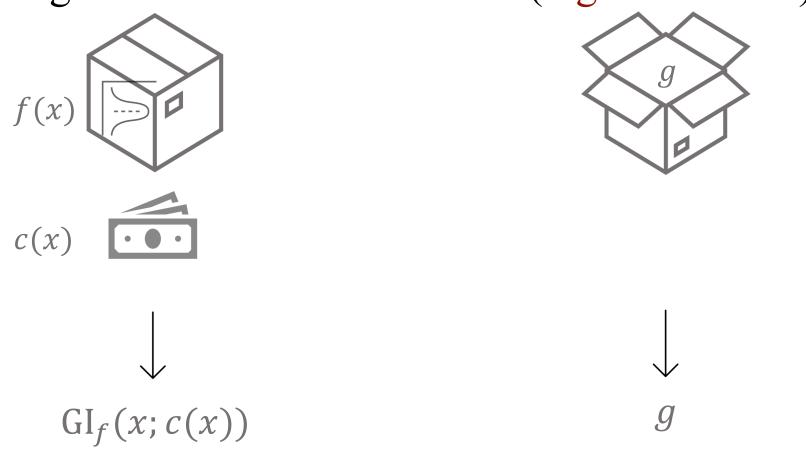
Independent

Flexible-stopping

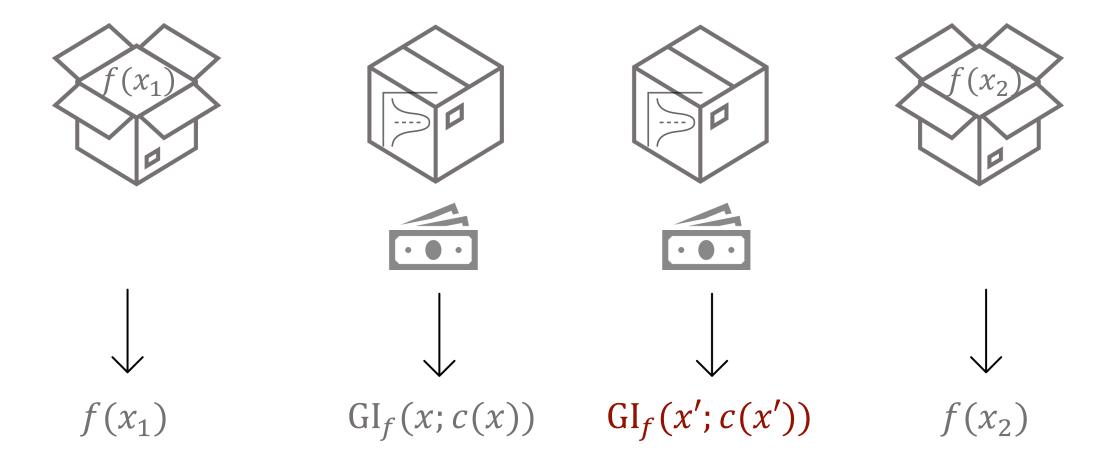
Expected cost-adjusted regret

Optimal policy: Gittins index

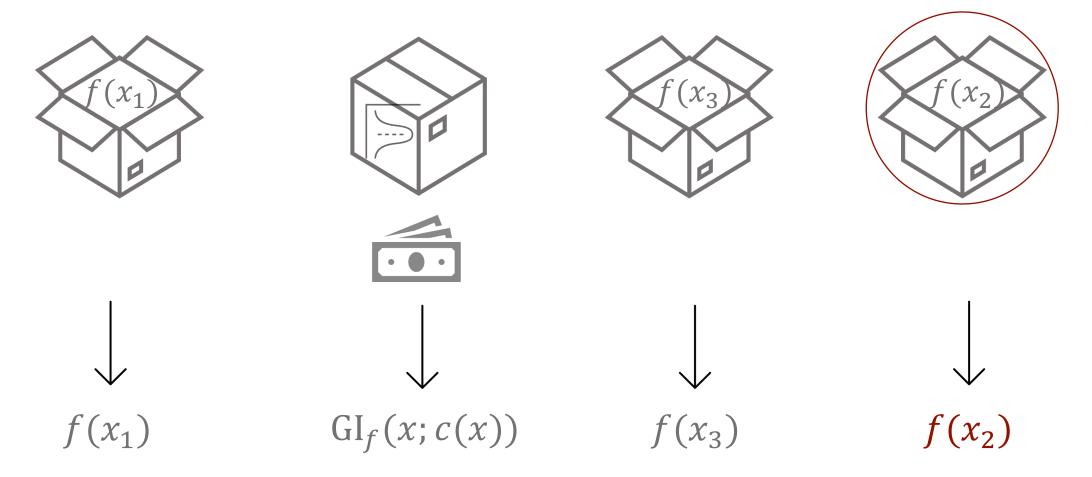
Step 1: Assign each box a Gittins index (higher is better)



Step 2: Open the box with highest index if it is closed



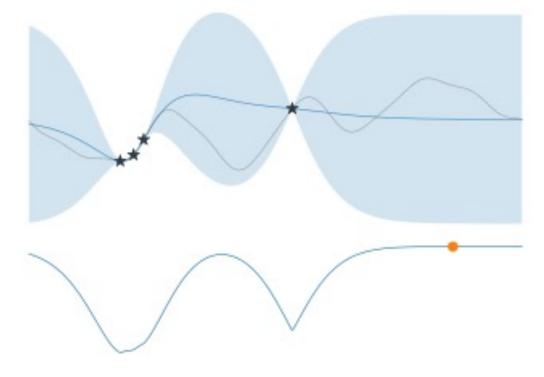
Step 2': Select the box with highest index if it is opened and stop



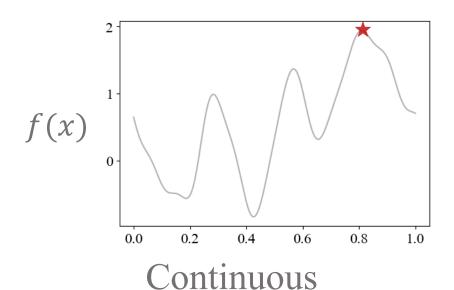
Varying evaluation costs
$$GI(x; c(x))$$

% Smart stopping time

$$\max_{x} GI(x; c(x)) \le \max_{x} f(x)$$



Gittins index GI(x)



Correlated

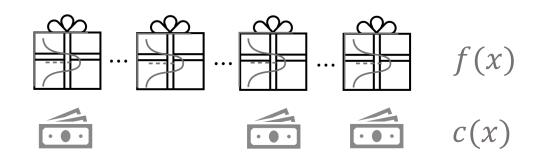
Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]



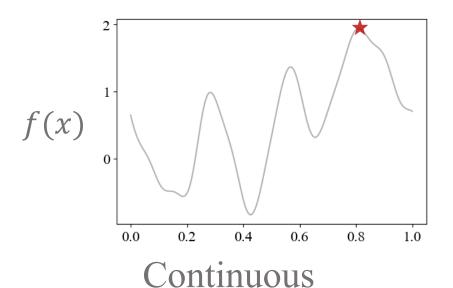
Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal



Correlated

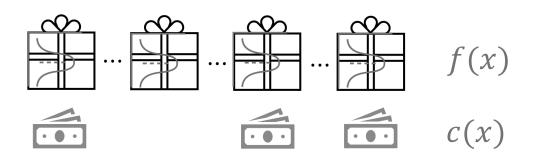
Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]



Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

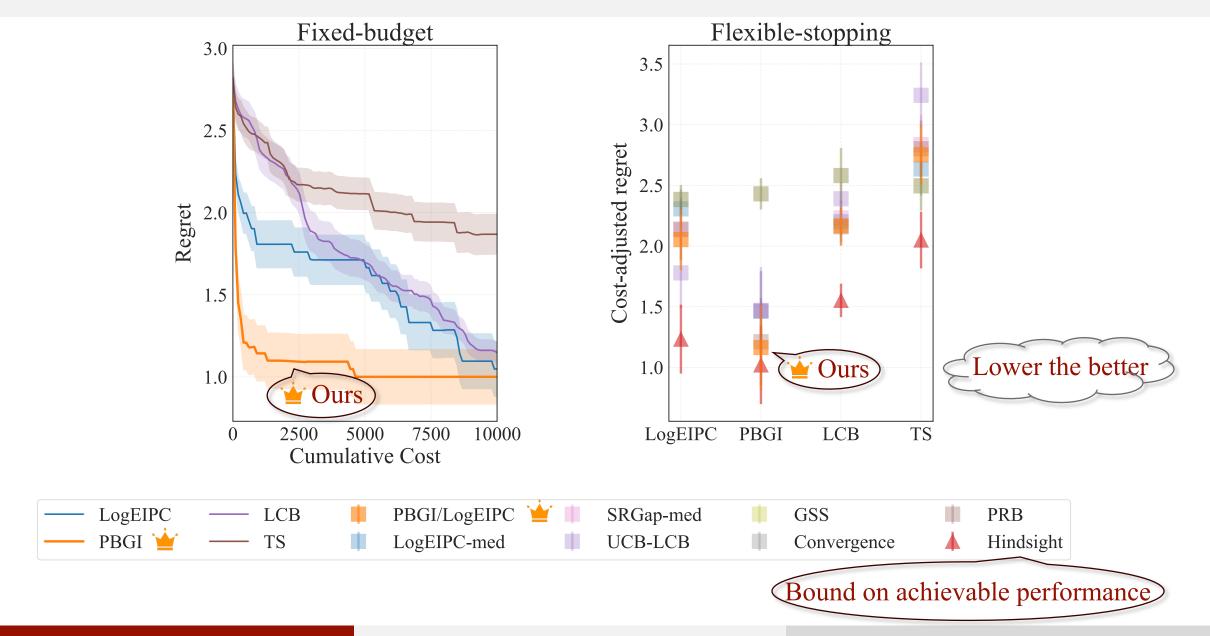
Gittins index is optimal

Our Contribution: Gittins Index Principle

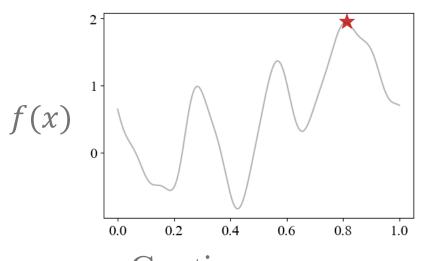
- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index (PBGI)

- 1. Naturally incorporates side info and practical flexibility
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Gittins Index vs Baselines on AutoML Benchmark



11/8/25 Qian Xie (Cornell ORIE) 51



Continuous

Correlated

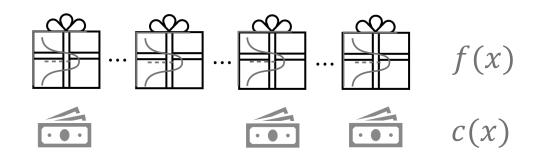
Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]



Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

Our Contribution: Gittins Index Principle

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds
- Thompson sampling
- Gittins Index

- 1. Naturally incorporates side info and practical flexibility
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Theoretical Guarantee and Empirical Validation

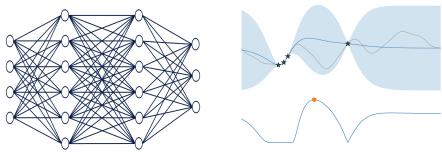
Theorem (No worse than stopping-immediately)

 $\mathbb{E}[R(\text{ours}; PBGI)] \le R[\text{stopping immediately}]$

Implication:

- Matches the best achievable performance in the worst case (evaluations are all very costly).
- Avoids over-spending a property many cost-unaware stopping rules lack.

Studied problem



Varying evaluation costs

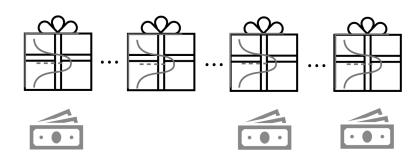
Adaptive stopping time

Impact

Competitive empirical performance & interests from practitioners

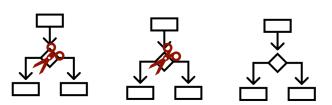
"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea



Link to Pandora's Box problem & Gittins index theory

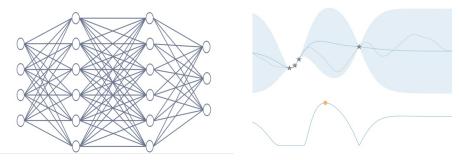
Ongoing work



Sharper theoretical guarantees & blackbox optimization w/ multi-stage feedback

"Cost-aware Stopping for Bayesian Optimization." Under review.

Studied problem



Varying evaluation costs

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

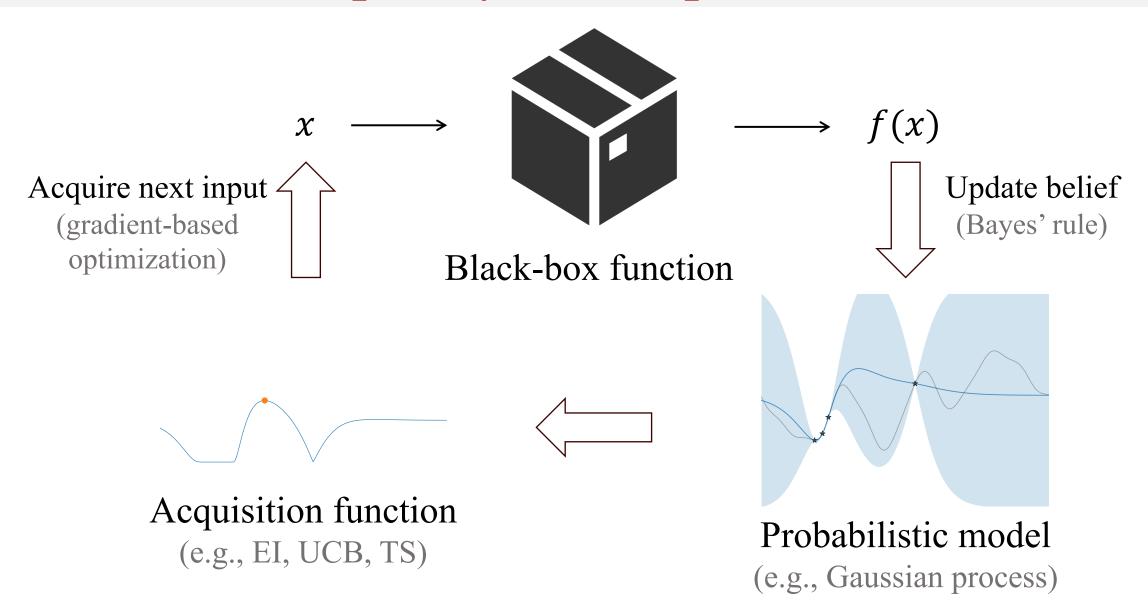
Link to Pandora's Box problem & Gittins index theory

Ongoing work

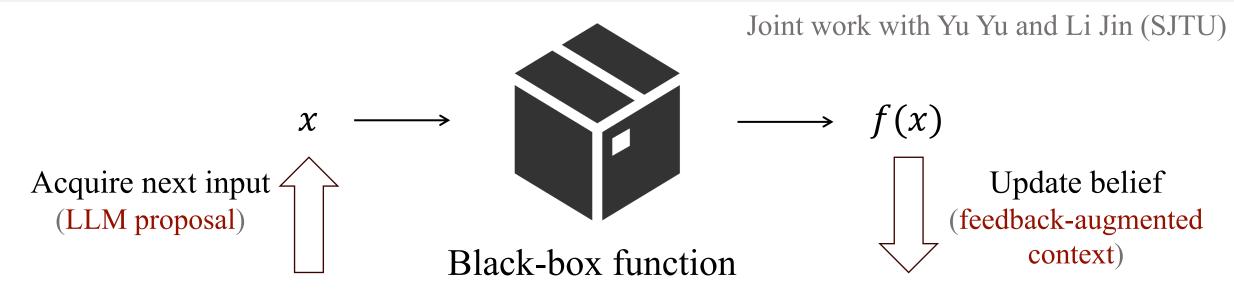
LLM-driven black-box optimization

"Cost-aware Stopping for Bayesian Optimization." Under review.

Recap: Bayesian Optimization



57

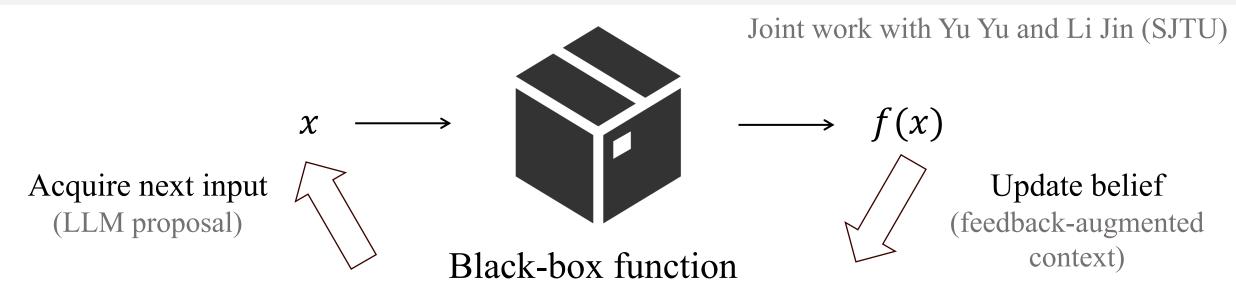


Acquisition function

(e.g., Softmax sampling)

Probabilistic model

(e.g., autoregressive model)

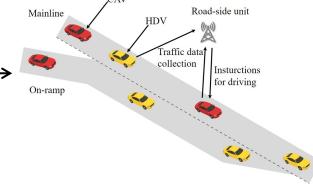


Mixed-autonomy traffic control:

Joint work with Yu Yu and Li Jin (SJTU)

(e.g., Transformer config)
RL state representation

Acquire next input (LLM proposal)



Average speed

Update belief (feedback-augmented context)

Black-box function

(RL training & evaluation)

_{СhatGPT} 🔷 Gemini

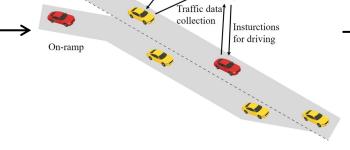
Mixed-autonomy traffic control:

Joint work with Yu Yu and Li Jin (SJTU)

(e.g., Transformer config)

RL state representation

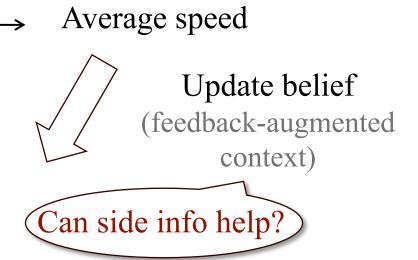
Acquire next input (LLM proposal)



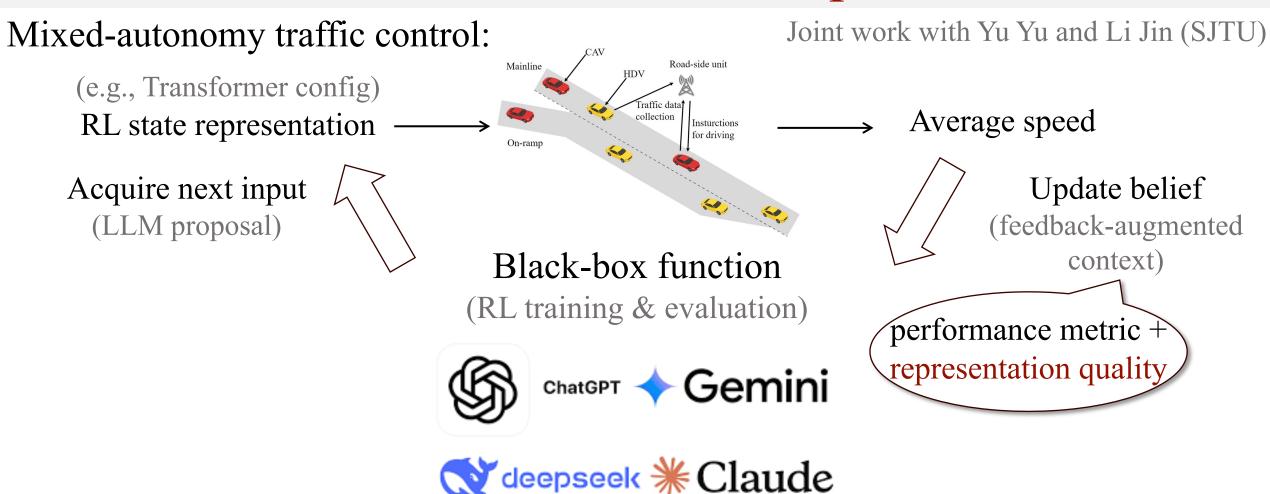
(RL training & evaluation)

ChatGPT

Road-side unit



Our LLM-Driven Method: Incorporate Side Info



Find our papers on arXiv!

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

"Cost-aware Stopping for Bayesian Optimization." Under review.