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Optimization Under Uncertainty

ML model training:
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Optimization Under Uncertainty

ML model training:

Training hyperparameters
(e.g., learning rate, # layers)

Adaptive experimentation:
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Decision/design variables
(e.g., layout, pricing level)
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Optimization Under Uncertainty

Black-box optimization:

non-analytical &
no gradient info

Input x > > Performance metric f(x)
ML model training: o /A\\v//k\
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Black-Box Optimization
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Input x

ML model training:
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Black-Box Optimization

. ’ > Performance metric f(x)

High-level goal: Choose x4, ..., x; to maximize the expected best observed value

Input x

E max f(x;)
t=1,2,. f ‘




Data-Driven Black-Box Optimization

N Epensive-to-evaluafe>

> Performance metric f(x)

Input x

adaptively

High-level goal: Choose x4, ..., x; to maximize the expected best observed value

Et rlnglx f(x:)

Fewer #eval@
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Data-Driven Black-Box Optimization

N Epensive-to-evaluafe>

> Performance metric f(x)

Input x

adaptively

High-level goal: Choose x4, ..., x; to maximize the expected best observed value

Et rlnglx f(x:)

Fewer #eval@

Efficient framework: Bayesian optimization
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Bayesian Optimization

x —— ." - 0

Black-box function
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Bayesian Optimization

Time O f ~Stochastic Process
) > ‘ ()
Model belief
Black-box function

Probabilistic model
(e.g., Gaussian process)
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Bayesian Optimization

Time t

N
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Black-box function
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f ~Stochastic Process

> f(xl): 'f(xt)

Model belief

—11 Objective Function
—— Mean
Confidence

Probabilistic model
(e.g., Gaussian process)
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Bayesian Optimization

Time t

N>
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Black-box function
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f ~Stochastic Process

> f(x1), o, f(X)
Update belief
(Bayes’ rule)

NS

Probabilistic model
(e.g., Gaussian process)

11



Bayesian Optimization

Time t
. “ > f(xq), o, f(x¢)

Update belief
(Bayes’ rule)
Black-box function

N <<= AT

Acquisition functio

n eqg e .
(e.g., EI, UCB, TS) /scoring (worth Probablllstlc model
of each point (e.g., Gaussian process)
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Bayesian Optimization

Time t “
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Bayesian Optimization
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Bayesian Optimization
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Existing Design Principles

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)
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New Design Principle: Gittins Index

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)

e Gittins Index
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New Design Principle: Gittins Index

* Improvement-based (e.g., EI)
* Entropy-based
* Confidence bounds (UCB/LCB)

* Thompson sampling (TS)
*Gittins Index

? Why another principle?
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Our Contribution: Gittins Index Principle

* Improvement-based (e.g., EI)
* Entropy-based
* Confidence bounds (UCB/LCB)

* Thompson sampling (TS)
*Gittins Index

? Why another principle?

1. Naturally incorporates side info and practical flexibility
2. Performs competitively on benchmarks
3. Comes with theoretical guarantees
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Under-explored Side Info and Flexibility

m Varying evaluation costs
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How does existing principle incorporate them?

Expected improvement EI(x)

m Varying evaluation costs

% Smart stopping time

T
T3 Observable multi-stage feedback

10/31/25

Qian Xie (Cornell) 22




How does existing principle incorporate them?

m Varying evaluation costs
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How does existing principle incorporate them?

m Varying evaluation costs

EI(x)/c(x) \*/\*\

% Smart stopping time

El(x) < 6 \J \/
Which threshold?>

Expected improvement EI(x)

T
T3 Observable multi-stage feedback
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How does existing principle incorporate them?

m Varying evaluation costs
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% Smart stopping time
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Under-explored Side Info and Flexibility

m Varying evaluation costs -

S New design principle:
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Why Gittins index?

Varying evaluation costs —
m S New design principle:

Gittins index

% Smart stopping time =

T
793 Observable multi-stage feedback -
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Why Gittins index?

m Varying evaluation costs -

% Smart stopping time

T
793 Observable multi-stage feedback -
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems
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Why Gittins index?

m Varying evaluation costs

Features in Pandora’s box

% Smart stopping time

Features in Pandora’s box

T
793 Observable multi-stage feedback -
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Optimal in related sequential
decision problems
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Why Gittins index?

m Varying evaluation costs

Features in Pandora’s box

% Smart stopping time

Features in Pandora’s box

T
793 Observable multi-stage feedback -

Features in Markovian bandits
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems
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What 1s Pandora’s Box?

m Varying evaluation costs

Features in Pandora’s box

% Smart stopping time

Features in Pandora’s box

T
g Observable multi-stage feedback -

Features in Markovian bandits
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems
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Pandora’s Box

High-level goal: Choose box x4, ..., X7 to open to maximize the expected utility

E max Tf(xt) — IEE c(x;)

t=1,2,..,
t=1
Flexible stopp@
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Pandora’s Box

High-level goal: Choose box x4, ...,

E max f(xt) — ]EZ c(x;)

t=1,2,.
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Pandora’s Box

&

2

[e]
c(x1)

High-level goal: Choose box x4, ..., X7 to open to maximize the expected utility
T
E max Xp) — ]EZ c(x
(Jnax f(x) (x¢)
t=1
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Pandora’s Box

<]

c(xq1) c(x2)

High-level goal: Choose box x4, ..., X7 to open to maximize the expected utility
T
E max Xp) — ]EZ c(x
(Jnax f(x) (x¢)
t=1
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Pandora’s Box

o o o
[e] [e] [e]
c(xq1) c(x3) c(x2)

High-level goal: Choose box x4, ..., X7 to open to maximize the expected utility
T
E max Xp) — ]EZ c(x
(Jnax f(x) (xt)
t=1
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Pandora’s Box
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High-level goal: Choose box x4, ..., X7 to open to maximize the expected utility
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Bayesian Optimization Pandora’s Box
[Weitzman’79]

*
1 o cn oo
N
f(x) = AP ] [P f(x)
N o = e
am ] g c(x)
Continuous Discrete
Correlated Independent
Fixed-iteration Flexible-stopping
Expected best-observed value Expected utility .
E max f(x) r
=Lt E max f(x)—IEZC(x)
t=1,2,..T° = ¢ t
t=1




Bayesian Optimization Pandora’s Box
[Weitzman’79]

*
! . ch o
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f(x) = AP ] [P f(x)
N T = e
[e] 1 [ cx)
Continuous Discrete
Correlated Independent
Fixed-1teration Flexible-stopping
Expected best-observed value Expected utility ,
E max f(x) T
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t=1,2,...,T t .
t=1




Bayesian Optimization

Foo

0_

x

Pandora’s Box
[Weitzman’79]

0.0 0.2 0.4 0.6

Continuous
Correlated
Fixed-iteration

Expected regret

Emax f(x) —E max_f(x)

t=1,2,..,T
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Bayesian Optimization Pandora’s Box
[Weitzman’79]

*
1 I . e
f(x) = AP ] [P f(x)
N T = e
oo ] [ c(x)
Continuous Discrete
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Expected regret Expected cost-adjusted regret
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Bayesian Optimization

x

Foo

0.0 0.2 0.4 0.6 0.8 1.0

Continuous
Correlated
Fixed-budget / Flexible-stopping
Expected (cost-adjusted) regret
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Pandora’s Box
[Weitzman’79]
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Expected cost-adjusted regret
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Bayesian Optimization

x

Foo

0.0 0.2 0.4 0.6 0.8 1.0

Continuous
Correlated
Fixed-budget / Flexible-stopping
Expected (cost-adjusted) regret
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Pandora’s Box

[Weitzman’79]

Sl el

g R s e O o s R €9

T s =

[e ] 1 [ <o)
Discrete
Independent

Flexible-stopping

Expected cost-adjusted regret

Optimal policy: Gittins index
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Optimal Policy: Gittins Index

Step 1: Assign each box a Gittins index (higher 1s better)
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Optimal Policy: Gittins Index

Step 2: Open the box with highest index if 1t 1s closed

P ¥

L]

f(x1) Gl (x;c(x))  Glp(x; c(x)) f(x2)
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Optimal Policy: Gittins Index

Step 2°: Select the box with highest index 1f it is opened and stop

<> 25
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Optimal Policy: Gittins Index

m Varying evaluation costs

GI(x; c(x)) Wl

% Smart stopping time
max GI(x; c(x)) < max f(x)

Gittins index GI(x)
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Bayesian Optimization

x

Foo

0.0 0.2 0.4 0.6 0.8 1.0

Continuous
Correlated
Fixed-budget / Flexible-stopping
Expected (cost-adjusted) regret

Is Gittins index good?
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Pandora’s Box

[Weitzman’79]
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Bayesian Optimization

x

Foo

0.0 0.2 0.4 0.6 0.8 1.0

Continuous
Correlated
Fixed-budget / Flexible-stopping
Expected (cost-adjusted) regret

Is Gittins index good?

empirically

Pandora’s Box
[Weitzman’79]
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Gittins index 1s optimal
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Our Contribution: Gittins Index Principle

* Improvement-based (e.g., LogEIPC)
* Entropy-based
* Confidence bounds (UCB/LCB)

* Thompson sampling (TS)
* Gittins Index (PBGI)

? Why another principle?

1. Naturally incorporates side info and practical flexibility
2. Performs competitively on benchmarks
3. Comes with theoretical guarantees
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vs Baselines on AutoML Benchmark

30 Fixed-budget Flexible-stopping
' 3.5
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0 2500 5000 7500 10000 LogEIPC PBGI LCB TS
Cumulative Cost
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@chievable performance
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Bayesian Optimization

x

Foo

0.0 0.2 0.4 0.6 0.8 1.0

Continuous
Correlated
Fixed-budget / Flexible-stopping
Expected (cost-adjusted) regret

Is Gittins index good?

coretically

Pandora’s Box
[Weitzman’79]
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Our Contribution: Gittins Index Principle

* Improvement-based (e.g., LogEIPC)
* Entropy-based

* Confidence bounds

* Thompson sampling

e Gittins Index

? Why another principle?

1. Naturally incorporates side info and practical flexibility
2. Performs competitively on benchmarks
3. Comes with theoretical guarantees
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Theoretical Guarantee and Empirical Validation

Cost-Adjusted Regret

20.0
Theorem (No worse than stopping-immediately) 17.5
E[R( ; )] < R[stopping immediately]| % 15.0
O
or LogEIPC) (cost-adjusted regret g 125
S
A 10.0
Implication: +
» Matches the best achievable performance in e 7
1 Q) . . 0
the worst case (evaluations are all very costly). 2 s, Stopping-immediately
. o % =] A ==
* Avoids over-spending — a property many 2.5 §
cost-unaware stopping rules lack. 00 A 2 A
LogEIPC PBGI LCB TS
PBGI/LogEIPC SRGap-med GSS PRB Immediate
LogEIPC-med UCB-LCB Convergence A  Hindsight
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H "Cost-aware Bayesian Optimization via the
I:I I:ID Pandora's Box Gittins Index.” NeurlPS’24.
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Link to Pandora’s Box problem
& Gittins index theory

Ongoing work

A &

Sharper theoretical guarantees & black-
box optimization w/ multi-stage feedback

e "Cost-aware Stopping for Bayesian
‘ Optimization.” Under review.
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Find our papers on arXiv!

"Cost-aware Bayesian Optimization via the
Pandora's Box Gittins Index.” NeurlPS’24.

10/31/25

"Cost-aware Stopping for Bayesian
Optimization.” Under review.

Qian Xie (Cornell ORIE)

56



