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Motivation: World of Optimization under Uncertainty
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Motivation: World of Optimization under Uncertainty
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Motivation: World of Optimization under Uncertainty

Black-box optimization: non-analytical &
(gradient-based methods not applicable)

Input x >
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ML model training: \(weights, blaSGS) /A

Training hyperparameters
(e.g., learning rate, # layers)
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Adaptive experimentation:
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(e.g., layout, pricing level) e
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Background: Black-Box Optimization

Black-box optimization:
(gradient-based methods not applicable)

Input x

ML model training:

v

Training hyperparameters
(e.g., learning rate, # layers)

Adaptive experimentation:

Decision/design variables
(e.g., layout, pricing level)
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Naive (Non-Adaptive) Approach: Grid Search

ML model training:

V/

A\A L. 4\‘\ I'I

.wcvr X% 04@'&
57

ov{ »‘;; Xpenswe -to- @

Training hyperparameters > i‘}}‘é‘{%o é,}%»:& ’l > Accuracy
BN 2 /
\y/// ,/
Training hyperparameter | Range Number of Options
Batch size 16, 512] 10 |
Learning rate [1e-4, le-1] ilO i
Momentum 0.1, 0.99] 101 Ceombinations!
Weight decay [1e-5, le-1] ilO i
Number of layers {1,2, 3,4} i4 i
Max units per layer [64, 1024] ilO i
Dropout [0.0, 1.0] 110 |
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Data-Driven (Adaptive) Approach

R

11
) Training/Experimentation

o7e

Design choices
(e.g., learning rate, price

Run next experiment

Data-efficient decision rule
(What to try next, when to stop)
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Performance metric
(e.g., accuracy, revenue)

Provide feedback



Existing Umbrellas of Black-Box Optimization

Naive approaches: Data-driven approaches:
* Grid search * Local search

* Random search * Evolutionary algorithms
* Manual tuning * Bayesian optimization

* Reinforcement learning
* LLM-based agent
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New Methods for Black-Box Optimization

Naive approaches: Data-driven approaches:

* Bayesian optimization
* Reinforcement learning
* LLM-based agent

Contributions of new methods proposed 1n my work:
1. Novel connection to related decision problems

2. Principled decision rules

3. Competitive empirical performance

New methods under this umbrella
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Bayesian Optimization

f ~Stochastic Process
X > ..’
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Black-box function
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Bayesian Optimization

Time 0

f ~Stochastic Process
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Bayesian Optimization

Time t

f ~Stochastic Process
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Bayesian Optimization

‘ f ~Stochastic Process

> f(x1), e, f(Xe)

Update belief
(Bayes’ rule)

Time t

Black-box function

2

0 Objective Function

*  Observed Data

Prediction
—2 Confidence
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Bayesian Optimization

Time t ‘
X1, o) Xt > ..

> f(xl)l :f(xt)

Update belief
(Bayes’ rule)

Black-box function

0 Objective Function
0.5 *  Observed Data
Prediction

0.0
0.0 0.2 04 0.6 0.8 1.0 —2 Confidence

Decision rule
(e.g., EI, UCB, TS)
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Bayesian Optimization

Time t ‘
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Timet + 1

.

Bayesian Optimization

Decide next mput
(gradient-based
optimization)

0.5

0.0
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Bayesian Optimization

0.5 W
@O'O 00 02 04 06 08 10
Decision rule scoring (wqrth
(e.g., EI, UCB, TS) Qi each point
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Challenges 1n Decision Rule Design

4_

Correlated values

Objective Function
*  Observed Data
—— Prediction
Confidence

0.0
|

0.2 0.4 0.6 0.8 1.0

Correlation & continuity
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Continuous search space

— Intractable MDP = Optimal policy unknown
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Popular Decision Rule: Expected Improvement

current best observed @
El(x) = max(f(x) Ybhest, 0) | xl, \/\\
0.0

|
“Iimprovement”

—2.51

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

= max, EIf|D(x) 05 \—/\/

One-step approximation to MDP Expected improvement EI(x)
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Popular Decision Rule: Expected Improvement
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Existing Design Principles

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)
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New Design Principle:

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)
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New Design Principle:

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)

2.5

0.0 0.2 0.4 0.6 0.8 1.0
W —@
0.0 0.2 0.4 0.6 0.8 1.0

? Why another principle?
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Our Contribution:

Novel connection

Principle

Principled decision rules

o (0" . . |]H|]D Varying evaluation costs
F:J ~ ) * }_) . }_/
= = = Adaptive stopping time
an xolillan A Adaptive stopping
Link to Pandora’s Box problem Unified framework for
& theory selection and stopping

Competitive empirical performance Future potential

L Adaptive response sampling
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Best-prompt 1dentification

W AW 3 Chain-of-thought selection
I —

Interests from practitioners (e.g., Meta)
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Our Contribution:

Novel connection
cOn cOn N cOn

\
= -
= =, =
[e] XX [e]

Link to Pandora’s Box problem

& theory
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Bayesian Optimization
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Bayesian Optimization

fx) \_/\‘¥

0.0 0.2 0.4 0.6 0.8 1.0

Continuous search space =

Correlated function values =
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Bayesian Optimization Pandora’s Box

" ;
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hidden reward
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Bayesian Optimization

fx) \_/\‘¥

0.0 0.2 0.4 0.6 0.8 1.0

Continuous search space

Correlated function values
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Bayesian Optimization Pandora’s Box

f(x) 0 W
c(x)
00 02 04 06 08 10

Continuous search space Discrete

Correlated function values Independent
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Bayesian Optimization

Pandora’s Box
[Weitzman’79]

2 -
f(X) 0 w /J . K’I_J . fJ . FJ
T = e
> [e] [e] L[]
Continuous search space Discrete
Correlated function values Independent
Optimal policy:
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Bayesian Optimization Pandora’s Box
[Weitzman’79]

2 CO‘) cN cn a%s)
\
f(X)OW g o ek e o RAED
o = e

5 ax ] [=1 cx)

o.f) 02 04 06 08 10 .
Continuous search space Discrete
Correlated function values Independent

How to translate? . ‘
& Optimal policy:
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Bayesian Optimization Pandora’s Box
[Weitzman’79]

2 CO‘) cN cn a%s)
\
f(x)ow g o ek e o RAED
o = e

5 ax ] [=1 cx)

o.f) 02 04 06 08 10 .
Continuous search space Discrete
Correlated function values Independent

Incorporate posterior

Our policy: Glgp(x; c) «—  Optimal policy: Gl¢(x; c)

take continuum limit
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Bayesian Optimization Pandora’s Box

N - [Weitzman’79]
1 C(h SO’) cn cH
f(x) = A ] - [P f(x)
) =, _=, =,
[e] 1 [ cx)

0.0 02 0.4 0.6 0.8 1.0
costs to open

Our policy: Glgp(x;c(x)) < Optimal policy: Glg(x; c(x))

How to compute?
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Intuition

Exploration

S o
F) .‘4 vs. ?‘?‘
_A
c(x)
Open closed box
E[max(f (x), g)] — c(x)

Should one open box? Depend on g!
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£ip (x; €): = solution g s.t.
E|lmax(f(x),g) | D] — c(x) =
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2.5

o BRAAN O

—2.51

0.0 0.2 0.4 0.6 0.8 1.0

N/

0.0 0.2 0.4 0.6 0.8 1.0

£ip (x; €): = solution g s.t.
E[max(f(x),g) | D] — c(x) =
& E[max(f(x) —g,9 —9) | D] —c(x) =0
< E[max(f(x) — g,0) | D] = c(x)

l

EIf|D(x; )
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Expected Improvement

2.5

| B A/

—2.51

0.0 0.2 0.4 0.6 0.8 1.0

0.5 \J\/
0.0/

0.0 0.2 0.4 0.6 0.8 1.0

EIf|D(x): = E[max(f (x) — Ybest, 0) | D]
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2.5
0.0

—2.51

£ip (x; ¢): = solution
where El¢p(x; 0): = E| max(f(x) —

\/k

0.0 0.2 0.4 0.6 0.8 1.0

NNV

0.0 0.2 0.4 0.6 0.8 1.0

CIGRNS>

c(x) =3

Exploration Exploitation

s.t. El¢p(x; ) = c(x)
,0) | D]



Expected Improvement

2.5 751
0.0 W 0.0 \/\*\—
2.5 250 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.0 ‘ ‘ | | | 0L ‘ | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Elfp(x): = E[max(f (x) — ¥pest, 0) | D] £ip(x; ¢): = solution ¢ s.t. El¢p(x; 1) = c(x)
where El¢p(x; 0): = E[max(f(x) — 7,0) | D]

Temporal simplification to MDP simplification to MDP
(One-step)
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Expected Improvement

25 ) s
0.0 \/K 0.0 W
25 250 | | | | |

00 02 04 06 08 10 00 02 04 06 08 10

0.5 \J \/ 5|
O'O’O‘O 0.2 0.4 0.6 0.8 1.0 000 0.2 > | 0.8 1.0

Elfp(x): = E[max(f (x) — ¥pest, 0) | D] £ip(x; ¢): = solution ¢ s.t. El¢p(x; 1) = c(x)
where El¢p(x; 0): = E[max(f(x) — 7,0) | D]

analytical expression

Temporal simplification to MDP simplification to MDP
Both are principled and easy-to-compute!

|:| "Cost-aware Bayesian Optimization via the
I:I I:ID Pandora's Box Gittins Index.” NeurlPS’24.
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Expected Improvement

2.5] 5 |
Y
—2.51 —2.50L ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

@
0.0 ‘ ‘ ‘ ‘ ‘ 0L ‘ _ ‘ ‘ ‘
00 02 04 06 08 1.0 00 02 — 0.8 1.0

Elfp(x): = E[max(f (x) — ¥pest, 0) | D] £ip(x; ¢): = solution g s.t. El¢p(x; g) = c(x)
where El¢ p (x; g): = E[max(f(x) — g,0) | D]

Google DeepMind

FunBO: Discovering new acquisition functions for
Bayesian Optimization with FunSearch

Qian Xie (Cornell)
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Our Contribution: Principle

Principled decision rules

UHUD Varying evaluation costs

W& Adaptive stopping time

Unified framework for
selection and stopping
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Under-explored Information for Better Decisions

m Varying evaluation costs

0 U
ST~ AN
X X XX

. o X “ “( "( X
‘\»93, Smart stopping time %\3‘{17. EREOSIA
K XK~ XN
LEXNNESERENETEK
EXREDA
7 | N /
T3 Observable multi-stage feedback
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How does existing principle incorporate them?

m Varying evaluation costs 2.5

EIPC(x;c) = El(x)/c(x) \f/\*\
[Snoek et al.”’12] 0.0
2
250

. [Astudilloetal"21] 00 02 04 06 08 1
% Smart stopping time 05
T: El(x,) < 8 0o \J\/
[Locatelli’97, Q 00 02 04 06 038 1.
Neuyen et al.’ 17 Which threshold?

- Ishibashi et al.”23] Expected improvement EI(x)
T3 Observable multi-stage feedback
?
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Under-explored Information for Better Decisions

m Varying evaluation costs —

% Smart stopping time - New design principle:

T
793 Observable multi-stage feedback -
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Why

m Varying evaluation costs -

% Smart stopping time

T
793 Observable multi-stage feedback -
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems
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Why
m Varying evaluation costs

Features in Pandora’s box

% Smart stopping time

Features in Pandora’s box

T
793 Observable multi-stage feedback -
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems

a¥s) cON cN cOH
\

r} H_.) }_J vos F'—J

o o o

[e] [e] [e]
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Why

m Varying evaluation costs

% Smart stopping time

T
793 Observable multi-stage feedback -

Features in Markov chain selection

Qian Xie (Cornell)

New design principle:
Gittins 1ndex

Optimal in related sequential

decision problems

O
!

O
J

O

N

AW O
o _ 7
O O

O
J

O
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N ANV N7
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Why

m Varying evaluation costs

Features in Pandora’s box

% Smart stopping time

Features in Pandora’s box

UHU "Cost-aware Bayesian Optimization via the
0 Pandora's Box Gittins Index.” NeurIPS’24.
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems

ANh AN N oD

\
K'J H_.) coo }_J vos F_-)
o o o
[e] [e] [e]

"Cost-aware Stopping for Bayesian
b

Optimization.” Under review.



Bayesian Optimization Pandora’s Box

x

a9 MNYe 9o NG %

EH-ER-HH re

Foo

2

=1 =1 c)

0.0 02 0.4 0.6 0.8 1.0
costs to open

b B
\

Cost-unaware Cost-aware
Fixed-iteration Flexible-stopping
Our policy: Glgp(x; c) Optimal policy: Gl (x; c)
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Expected Improvement vs

m Varying evaluation costs
EIPC(x; c) = El(x)/c(x) (x; ¢): = solution g s.t. EI(x; g) = c(x)

Arbitrarily bad @ incomo@

‘\»?g, Smart stopping time
T: El(x;) <6 T: GI(X55 €) < Ypest

Which threshold?Y < T EIPC(x;;c) <1
@ared stopping rule

UHU "Cost-aware Bayesian Optimization via the e "Cost-aware Stopping for Bayesian
U Pandora's Box Gittins Index.” NeurIPS’24. ‘ Optimization.” Under review.
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Theoretical Guarantee and Empirical Validation

Cost-Adjusted Regret

Theorem (Safeguard Guarantee) 20.0
E[R(ours; )] < R[stopping immediately] 17.5
or LogEIPC) (cost-adjusted regret % 15.0
% 12.5
Implication: E 100
» Matches the best achievable performance in o
the worst case (evaluations are all very costly). ?0 7.5
o
» Avoids over-spending — a property many >0

cost-unaware stopping rules lack. > = + A

Stopping—imm@

A

Proof idea: For all t < 7, EI(x¢11) = ¢(X¢41). LogIPC PBGI LCB TS
ing tim
StOp p gt < PBGI/LogEIPC SRGap-med GSS PRB Immediate
LogEIPC-med UCB-LCB Convergence A  Hindsight

e "Cost-aware Stopping for Bayesian
Optimization.” Under review.
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Our Contribution: Principle

Competitive empirical performance

0N—C
X7 7 NN
ORI 0SBEAS ISR
Wbl orl XK

X XXX
or SN s SN0

OZRSCOSZRRST
0 050 7/
N W

Interests from practitioners (e.g., Meta)
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vs Baselines on AutoML Benchmark

30 Fixed-budget Flexible-stopping
' 3.5
75 3.0
: I
| © 25 |
B 2.0 5
o) 2 20|F ) +
a7 <
T
. 1.5 |z
oap to the optimum 3 LS5 * +
ﬂﬂ
1.0 AR ) Lower the better
1.0
Lower the better ©

0 2500 5000 7500 10000 LogEIPC PBGI LCB TS
Cumulative Cost

—— LogEIPC — LCB " PBGI/LogEIPC SRGap-med GSS PRB
— PBGI — TS LogEIPC-med UCB-LCB Convergence A Hindsight

| |
| 5 Not a real baseline
Selection rules Stopping rules
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Our Contribution: Principle

Future potential
L Adaptive response sampling

Best-prompt 1dentification

51 Chain-of-thought selection
Application to efficient LLM
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Adaptive Response Sampling in LLM Inference

LLM inference time alignment (optimization):

> Reward

LM response >

2/10/26
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Adaptive Response Sampling in LLM Inference

LLM inference time alignment (optimization):

\ ... \
LM response > > Reward
prompt r;:_:rqnt(?’:gzz:r
Infinite 1dentical boxes
= response generations
cH cN %) a9
\ \
. F‘) e H»J ) }_J coe F—) s

Adaptive stopping vs. fixed budget (best-of-N)
(Kalayci et al. 2025)
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Adaptive Response Sampling in LLM Inference

LM response > Reward

prompt returned to user

Infinite identical boxes Reward distribution -
= response generations unknown and non-Gaussia
cON cON cN cN

Adaptive stopping vs. fixed budget (best-of-N)
(Kalayci et al. 2025)
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Adaptive Response Sampling in LLM Inference

LM response > Reward

prompt returned to user

Infinite identical boxes Reward distribution -
= response generations unknown and non-Gaussia
cON cON cN cN

Adaptive stopping vs. fixed budget (best-of-N)
(Kalayci et al. ’25)

Ours: model-free stopping
via meta learning

2/10/26
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Best-prompt Identification in LLM Evaluation

LLM multi-prompt evaluation:

(@ Zero-shot f=-Fewshot & CoT &g RAG (] Revise
® cChatGPT
(GPT-4.1)

AL
=& Claude
\ 3.5 Sonnet

Prompt template 4 Semn ? _ Average performance
for each LILM & decpseck 7 of (LM, prompt) pairs
00 tame

A\ Mistral ?
Large
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Qian Xie (Cornell)

61



Best-prompt Identification in LLM Evaluation

LLM multi-prompt evaluation:

., Average performance

(@ Zero-shot E=Fewshot & CoT &%]RAG ) Revise
® oy
:)\g. Claude
3.5 Sonnet
Prompt template Do
for each LLLM & decpseck
00 Llama ?
3.1-70B
A\ Mistral
Large
Prompt/ Qi Q2 Q3 Predicted avg
Question permance
Prompt 1 1 ﬁlz ﬁ|3 perf|
Prompt2 | Poy;| 1 P23 | . perf,

Matrix completion
(Polo et al. NeurIPS’24)

Qian Xie (Cornell)
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of (LLM, prompt) pairs
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Best-prompt Identification in LLM Evaluation

LLM multi-prompt evaluation:

., Average performance

(@ Zero-shot E=Fewshot & CoT &%]RAG ) Revise
® oy
:)\g. Claude
3.5 Sonnet
Prompt template Do
for each LLLM & decpseck
00 Llama ?
3.1-70B
A\ Mistral
Large
Prompt/ Qi Q2 Q3 Predicted avg
Question permance
Prompt 1 1 ﬁlz ﬁ|3 perf|
Prompt2 | Poy;| 1 P23 | . perf,

Matrix completion
(Polo et al. NeurIPS’24)

Qian Xie (Cornell)
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of (LLM, prompt) pairs
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Best-prompt Identification in LLM Evaluation

Prompt template
for each LLLM

\ 4

2/10/26

@ ChatGPT

(GPT-4.1)

‘ié Claude
W 3.5 Sonnet

¢ Gemini
1.5 Pro

(@ Zero-shot %; Fewshot @& CoT &% RAG | )Revise

& deepseek  ?
?

00 Llama
3.1-70B

A\ Mistral
Large

Prompt/ | af ' a2 ' a3 ' ' Predicted avg |
Question permance
Prompt 1 1 P P13 | - ;e?f.
Prompt 2 1321 1 ﬁ23 f)’e\rfz
Prompt3 | 1 | pyy | P33 | - perf 3

Matrix completion
(Polo et al. NeurIPS’24)

Qian Xie (Cornell)

., Average performance

of (LLM, prompt) pairs

How about tensors?
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Best-prompt Identification in LLM Evaluation

(@ Zero-shot f=-Fewshot & CoT CE RAG (] Revise

@ ChatGPT
(GPT-4.1)

4\ Claude
V' 35S

Prompt template 4 Gemin ? _ Average performance
for each LLLM & decpseck of (LM, prompt) pairs

w Llama ?
3.1-70B

A\ Mistral
Large

c” cn cn Applicable to tensors
= =15 —5

\ 4

\

- - -
cN cN a9

1P g2 =P

Ours: BayesOpt +
(supports multi-selection

T
U

A1 Al i
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Novel connection
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Link to Pandora’s Box problem

&

theory

Competitive empirical performance
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Interests from practitioners (e.g., Meta)

H "Cost-aware Bayesian Optimization via the
I:I I:ID Pandora's Box Gittins Index.” NeurlPS’24.

2/10/26

Qian Xie (Cornell)

Principled decision rules

[|H|]D Varying evaluation costs

2R Adaptive stopping time

Unified framework for
selection and stopping

Future potential
"_Li Adaptive response sampling

Best-prompt 1dentification

ga Chain-of-thought selection

I

Application to efficient LLM

e "Cost-aware Stopping for Bayesian
‘ Optimization.” Under review.
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Find my papers on arXiv!

"Cost-aware Bayesian Optimization via the
Pandora's Box Gittins Index.” NeurlPS’24.

2/9/26

"Cost-aware Stopping for Bayesian
Optimization.” Under review.

Qian Xie (Cornell ORIE)
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