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Input 𝑥
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Deployment
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Operational cost
User experience
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(gradient-based methods not applicable)



Training hyperparameter Range Number of Options
Batch size [16, 512] 10
Learning rate [1e-4, 1e-1] 10
Momentum [0.1, 0.99] 10
Weight decay [1e-5, 1e-1] 10
Number of layers {1, 2, 3, 4} 4
Max units per layer [64, 1024] 10
Dropout [0.0, 1.0] 10

Naïve (Non-Adaptive) Approach: Grid Search
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40,000,000 
combinations!

Accuracy

ML model training:

Training hyperparameters

expensive-to-evaluate



Data-Driven (Adaptive) Approach
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Design choices
(e.g., learning rate, price)

Performance metric
(e.g., accuracy, revenue)

Data-efficient decision rule
(What to try next, when to stop)

Provide feedbackRun next experiment

Training/Experimentation
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Naïve approaches:     Data-driven approaches:
•Grid search •Local search
•Random search •Evolutionary algorithms
•Manual tuning •Bayesian optimization

•Reinforcement learning
•LLM-based agent

New methods under this umbrella

Contributions of new methods proposed in my work:
1. Novel connection to related decision problems
2. Principled decision rules
3. Competitive empirical performance

This talk’s focus
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Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)
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Decision rule
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Challenges in Decision Rule Design
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Continuous search space

Correlated values

Correlation & continuity ⟹ Intractable MDP ⟹ Optimal policy unknown



Popular Decision Rule: Expected Improvement
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EI 𝑥 = 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝑥!, … , 𝑥"]

current best observed data 𝐷

“improvement”

𝑥"#! = max( 	EI)|+(𝑥)

One-step approximation to MDP

posterior distribution

Expected improvement EI(𝑥)

𝑦!"#$
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Expected improvement EI(𝑥)

Improvement-based 
design principle

EI 𝑥 = 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝑥!, … , 𝑥"]

current best observed

“improvement”

𝑥"#! = max( 	EI)|+(𝑥; 𝑦$%&')

One-step approximation to MDP

posterior distribution

data 𝐷



Existing Design Principles
• Improvement-based (e.g., EI)
•Entropy-based
•Confidence bounds (UCB/LCB)
•Thompson sampling (TS)
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Expected improvement EI(𝑥)

Improvement-based 
design principle
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Why another principle?
Gittins index GI(𝑥)
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Novel connection

Competitive empirical performance

Link to Pandora’s Box problem 
& Gittins index theory

Interests from practitioners (e.g., Meta)

⋯ ⋯ ⋯
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Application to efficient LLM
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Chain-of-thought selection
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Our Contribution: Gittins Index Principle
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Bayesian Optimization

𝑓(𝑥)
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Continuous search space Discrete

Correlated function values Independent

⟹

⟹
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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Continuous search space Discrete

Correlated function values Independent

distribution of 
hidden reward
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Bayesian Optimization
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𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]

2/9/26 Qian Xie (Cornell)

Continuous search space Discrete

Correlated function values Independent

distribution of 
hidden reward

𝑐(𝑥)
costs to open
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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Continuous search space Discrete

Correlated function values Independent

reward revealed 
when open

costs to open

selected



Continuous search space Discrete

Correlated function values Independent

Optimal policy: Gittins index
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Bayesian Optimization
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Bayesian Optimization

⋯ ⋯ ⋯
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𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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⟸
How to translate?

costs to open
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Continuous search space Discrete

Correlated function values Independent
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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incorporate posterior

take continuum limit

costs to open

New!
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Continuous Discrete

Correlated Independent

Our policy: GI)|+(𝑥; 𝑐(𝑥)) Optimal policy: GI)(𝑥; 𝑐(𝑥))
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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incorporate posterior

take continuum limitHow to compute?

costs to open
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Gittins Index
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GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. 
𝔼 max 𝑓 𝑥 , 𝑔 	 𝐷] − 𝑐 𝑥 = 𝑔

vs.

𝑐(𝑥)

𝑓(𝑥) 𝑔

Exploration Exploitation

Open closed box Take opened box
𝔼 max 𝑓 𝑥 , 𝑔 − 𝑐(𝑥) 𝑔

Should one open box? Depend on 𝑔!

Intuition
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Gittins Index
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vs.

𝑐(𝑥)

𝑓(𝑥) 𝑔

Exploration Exploitation

Open closed box Take opened box
𝔼 max 𝑓 𝑥 , 𝑔 − 𝑐(𝑥) 𝑔

Should one open box? Depend on 𝑔!

Intuition

GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. 
𝔼 max 𝑓 𝑥 , 𝑔 	 𝐷] − 𝑐 𝑥 = 𝑔

⟺ 𝔼 max 𝑓 𝑥 − 𝑔, 𝑔 − 𝑔 	 𝐷] − 𝑐 𝑥 = 0
⟺ 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷] = 𝑐 𝑥

EI!|# 𝑥; 𝑔
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Gittins IndexExpected Improvement
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EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷] GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]

Exploration Exploitation

𝑐(𝑥)

𝑓(𝑥)
𝑔

vs.
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Gittins IndexExpected Improvement
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EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷] GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]

Spatial simplification to MDPTemporal simplification to MDP
(One-step)



Spatial simplification to MDPTemporal simplification to MDP
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Gittins IndexExpected Improvement
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EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷] GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]

bisection search

analytical expression

Both are principled and easy-to-compute! 
"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.
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Gittins IndexExpected Improvement
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GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]

EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷]

hard to discover GI

bisection search
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Novel connection

Link to Pandora’s Box problem 
& Gittins index theory

⋯ ⋯ ⋯

2/10/26 Qian Xie (Cornell)

Future potential

Application to efficient LLM

Adaptive response sampling

Chain-of-thought selection

Our Contribution: Gittins Index Principle

Competitive empirical performance

Interests from practitioners (e.g., Meta)

Varying evaluation costs

Adaptive stopping time

Unified framework for 
selection and stopping 

Principled decision rules

Best-prompt identification
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Under-explored Information for Better Decisions
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Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
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Varying evaluation costs   
  

 Smart stopping time
  

 
  

[Locatelli’97,
Nguyen et al.’17,
Ishibashi et al.’23]
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How does existing principle incorporate them?
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Expected improvement EI(𝑥)

?

𝜏: 	EI 𝑥, ≤ 𝜃

Arbitrarily bad

EIPC 𝑥; 𝑐 = EI 𝑥 /𝑐(𝑥)
[Snoek et al.’12]

[Astudillo et al.’21]

Which threshold?



Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
  

46

Under-explored Information for Better Decisions

2/9/26 Qian Xie (Cornell)

New design principle: 
Gittins index
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Why Gittins index?

2/9/26 Qian Xie (Cornell)

Optimal in related sequential 
decision problems

New design principle: 
Gittins index
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Why Gittins index?

2/9/26 Qian Xie (Cornell)

Features in Pandora’s box

Features in Pandora’s box

Optimal in related sequential 
decision problems

New design principle: 
Gittins index

⋯ ⋯ ⋯
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Why Gittins index?
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Features in Pandora’s box

Features in Pandora’s box

Features in Markov chain selection

Optimal in related sequential 
decision problems

New design principle: 
Gittins index
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Why Gittins index?

2/9/26 Qian Xie (Cornell)

Features in Pandora’s box

Features in Pandora’s box

Features in Markov chain selection

Optimal in related sequential 
decision problems

⋯ ⋯ ⋯

New design principle: 
Gittins index

This talk’s focus

"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]

2/9/26 Qian Xie (Cornell)

Continuous Discrete

Correlated Independent

Cost-unaware Cost-aware

Fixed-iteration Flexible-stopping

Our policy: GI)|+(𝑥; 𝑐) Optimal policy: GI)(𝑥; 𝑐)

costs to open



Varying evaluation costs   
  

 Smart stopping time
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Expected Improvement vs Gittins Index
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GI 𝑥; 𝑐 : = solution 𝑔 s.t. EI 𝑥; 𝑔 = 𝑐(𝑥)

𝜏: 	GI 𝑥,; 𝑐 ≤ 𝑦$%&'
⟺ 𝜏:EIPC 𝑥,; 𝑐 ≤ 1

naturally incorporates costs

derived shared stopping rule

EIPC 𝑥; 𝑐 = EI 𝑥 /𝑐(𝑥)

𝜏: 	EI 𝑥, ≤ 𝜃

Arbitrarily bad

"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

Which threshold?
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Theoretical Guarantee and Empirical Validation
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𝔼 𝑅 ours; PBGI ≤ 𝑅 stopping	immediately

Implication: 
• Matches the best achievable performance in 
the worst case (evaluations are all very costly). 

• Avoids over-spending — a property many 
cost-unaware stopping rules lack.

Proof idea: For all 𝑡 < 𝜏, EI 𝑥!"# ≥ 𝑐(𝑥!"#).

Theorem (Safeguard Guarantee)

or LogEIPC cost-adjusted regret

Stopping-immediately

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

belowbelow

stopping time

New
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Novel connection

Link to Pandora’s Box problem 
& Gittins index theory

⋯ ⋯ ⋯

2/10/26 Qian Xie (Cornell)

Future potential

Application to efficient LLM

Adaptive response sampling

Chain-of-thought selection

Best-prompt identification

Our Contribution: Gittins Index Principle

Competitive empirical performance

Interests from practitioners (e.g., Meta)

Varying evaluation costs

Adaptive stopping time

Unified framework for 
selection and stopping 

Principled decision rules
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Gittins Index vs Baselines on AutoML Benchmark
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Ours

Not a real baseline

Lower the betterOurs

Selection rules Stopping rules

gap to the optimum

Lower the better
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Novel connection

Link to Pandora’s Box problem 
& Gittins index theory

⋯ ⋯ ⋯

2/10/26 Qian Xie (Cornell)

Our Contribution: Gittins Index Principle

Varying evaluation costs

Adaptive stopping time

Unified framework for cost-aware 
selection and stopping 

Principled decision rules

Competitive empirical performance

Interests from practitioners (e.g., Meta)

Future potential

Application to efficient LLM

Adaptive response sampling

Chain-of-thought selection

Best-prompt identification
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Reward

LLM inference time alignment (optimization):

LLM response
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Reward

LLM inference time alignment (optimization):

LLM response

⋯ ⋯ ⋯⋯ ⋯

Adaptive stopping vs. fixed budget (best-of-𝑁)
(Kalayci et al. 2025)

Infinite identical boxes 
= response generations



Adaptive Response Sampling in LLM Inference
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RewardLLM response

⋯ ⋯ ⋯

Reward distribution 
unknown and non-Gaussian

⋯ ⋯

Adaptive stopping vs. fixed budget (best-of-𝑁)
(Kalayci et al. 2025)

Infinite identical boxes 
= response generations



Adaptive Response Sampling in LLM Inference
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RewardLLM response

⋯ ⋯ ⋯

Reward distribution 
unknown and non-Gaussian

⋯ ⋯

Adaptive stopping vs. fixed budget (best-of-𝑁)
(Kalayci et al. ’25)

Infinite identical boxes 
= response generations

Ours: model-free stopping 
via meta learning



Best-prompt Identification in LLM Evaluation
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Average performance 
of (LLM, prompt) pairs

Prompt template 
for each LLM

LLM multi-prompt evaluation:
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Average performance 
of (LLM, prompt) pairs

Prompt template 
for each LLM

LLM multi-prompt evaluation:

Matrix completion
(Polo et al. NeurIPS’24)
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Average performance 
of (LLM, prompt) pairs

Prompt template 
for each LLM

LLM multi-prompt evaluation:

Matrix completion
(Polo et al. NeurIPS’24)
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Average performance 
of (LLM, prompt) pairs

Prompt template 
for each LLM

Matrix completion
(Polo et al. NeurIPS’24)

How about tensors?
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Average performance 
of (LLM, prompt) pairs

Prompt template 
for each LLM

Ours: BayesOpt + Gittins
(supports multi-selection)

Boxes = entries Applicable to tensors



"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.
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Novel connection

Competitive empirical performance

Link to Pandora’s Box problem 
& Gittins index theory

Interests from practitioners (e.g., Meta)

⋯ ⋯ ⋯

2/10/26 Qian Xie (Cornell)

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

Varying evaluation costs

Adaptive stopping time

Future potential

Unified framework for 
selection and stopping 

Principled decision rules

Application to efficient LLM

Adaptive response sampling

Chain-of-thought selection

Best-prompt identification
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"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.

2/9/26 Qian Xie (Cornell ORIE)

Find my papers on arXiv!

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.


