

Cost-Aware Bayesian Optimization with Adaptive Stopping via the Pandora's Box Gittins Index

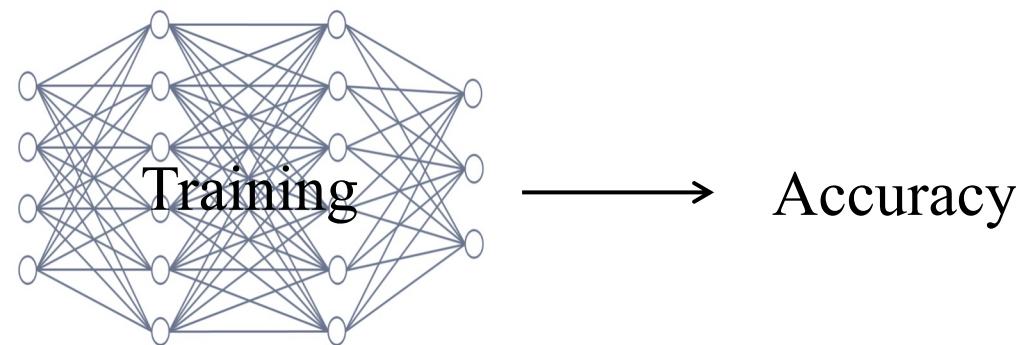
Qian Xie 谢倩 (Cornell ORIE)

TTAP Job Talk

Motivation: World of Optimization under Uncertainty

ML model training:

Training hyperparameters
(e.g., learning rate, # layers) \longrightarrow



Motivation: World of Optimization under Uncertainty

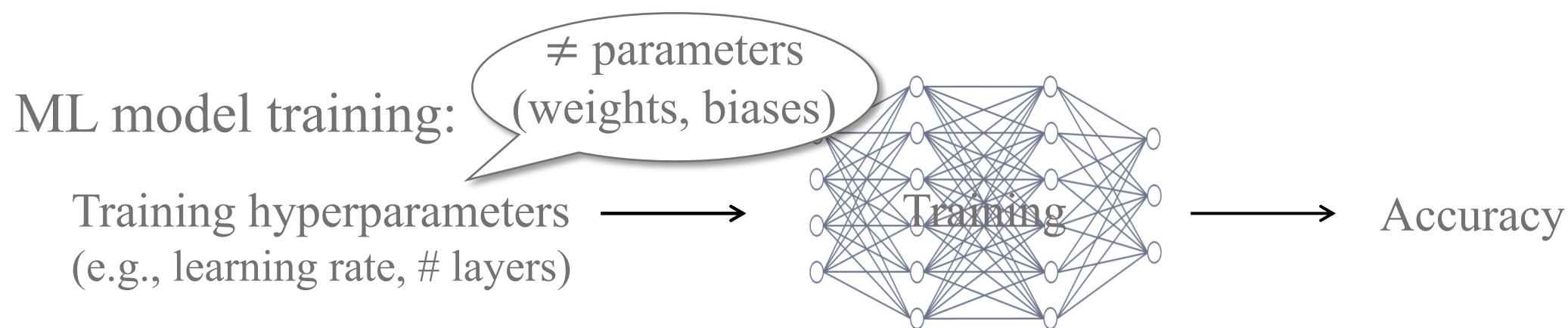
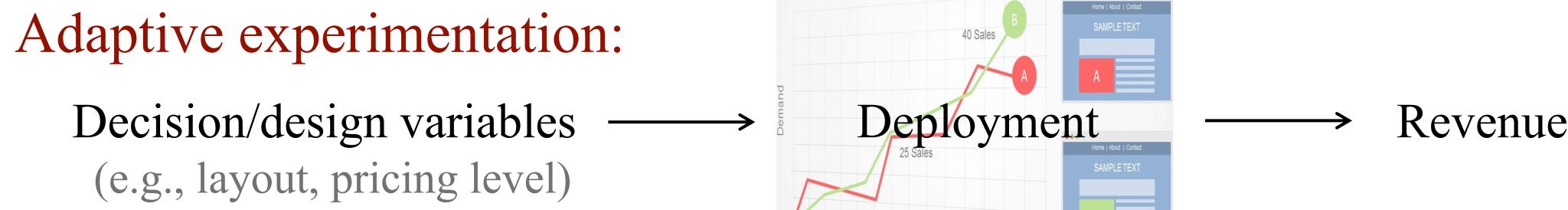
ML model training:

Training hyperparameters
(e.g., learning rate, # layers)

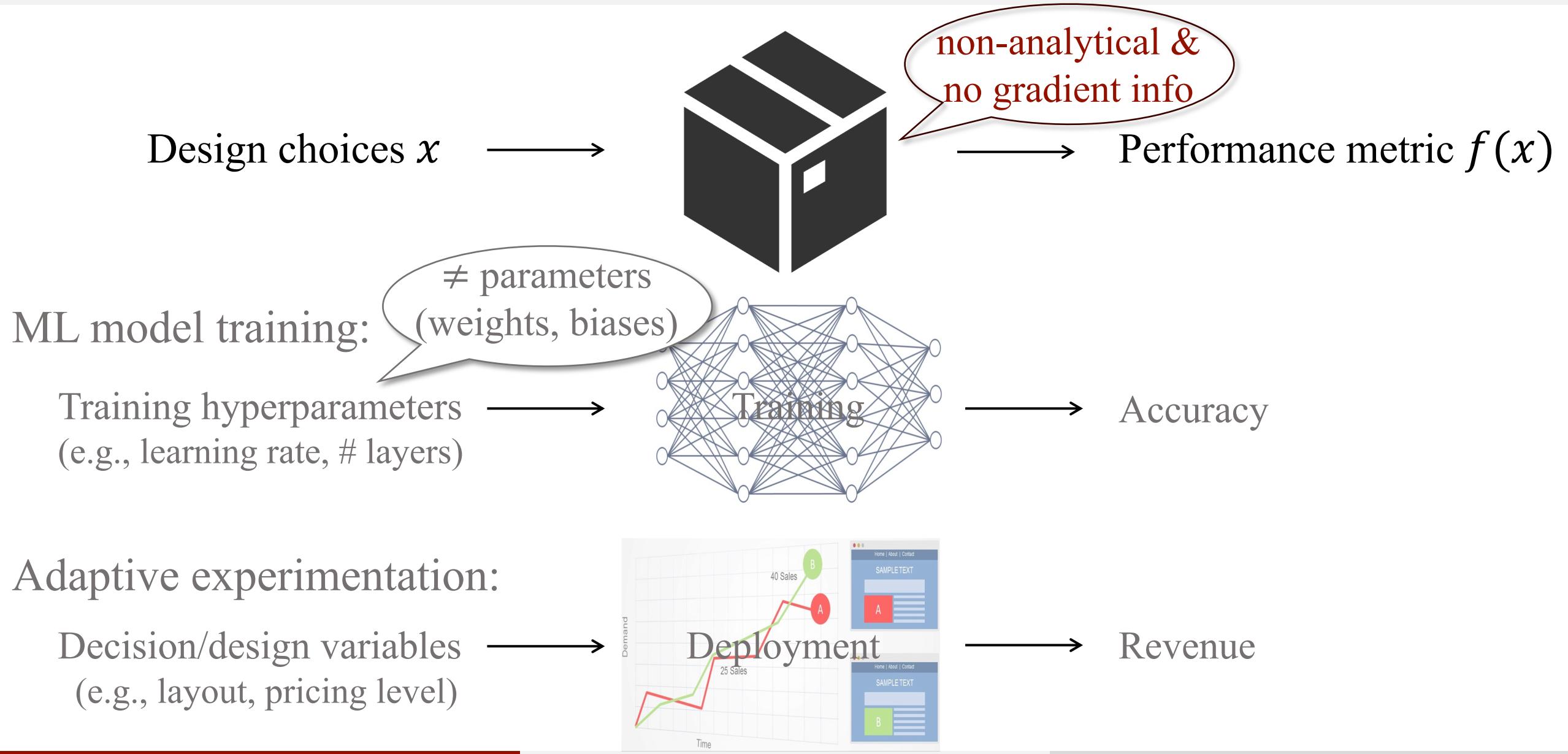
≠ parameters
(weights, biases)

→ Accuracy

Motivation: World of Optimization under Uncertainty



Motivation: World of Optimization under Uncertainty



Motivation: World of Optimization under Uncertainty

Black-box optimization:

(gradient-based methods not applicable)

Input x \longrightarrow

non-analytical &
no gradient info

\longrightarrow Observed outcome $f(x)$

ML model training:

\neq parameters
(weights, biases)

Training hyperparameters \longrightarrow
(e.g., learning rate, # layers)

\longrightarrow Accuracy

Adaptive experimentation:

Decision/design variables \longrightarrow
(e.g., layout, pricing level)

\longrightarrow Revenue

Background: Black-Box Optimization

Black-box optimization:

(gradient-based methods not applicable)

Input x \longrightarrow

expensive-to-evaluate

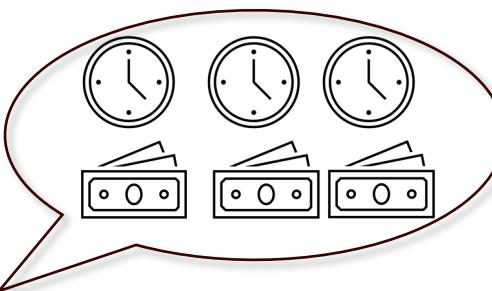
Observed outcome $f(x)$

ML model training:

Training hyperparameters \longrightarrow
(e.g., learning rate, # layers)

Training time

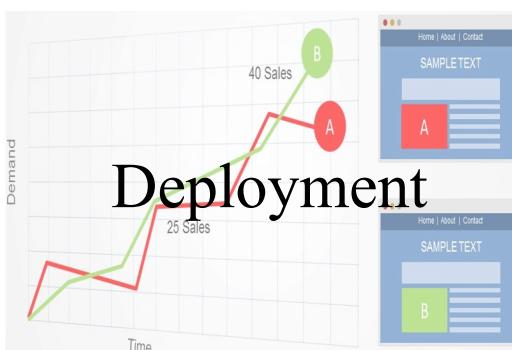
Compute credits



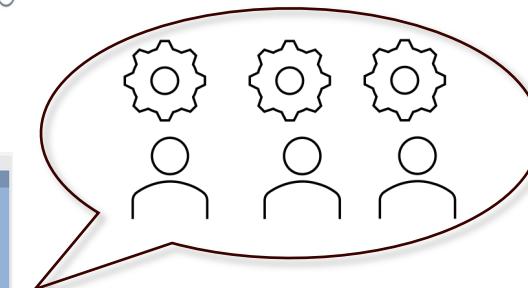
Accuracy

Adaptive experimentation:

Decision/design variables \longrightarrow
(e.g., layout, pricing level)



Deployment



Revenue

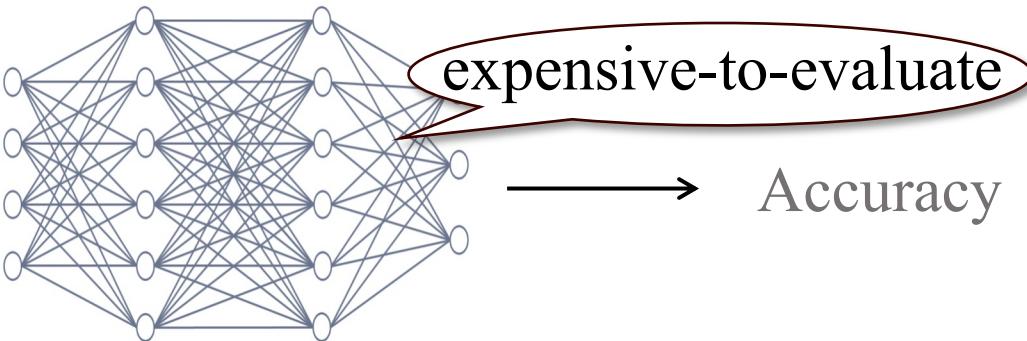
Operational cost

User experience

Naïve (Non-Adaptive) Approach: Grid Search

ML model training:

Training hyperparameters

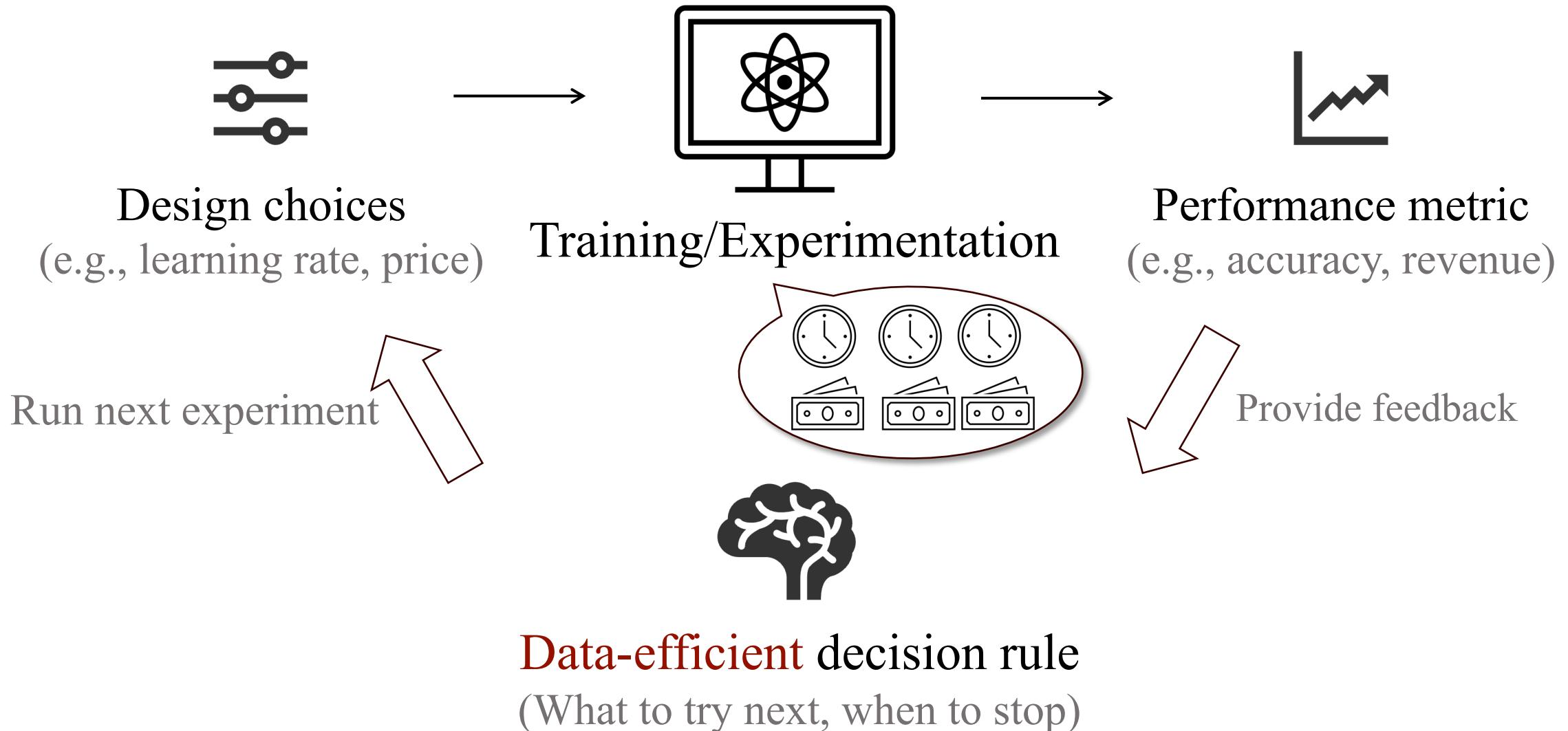


Accuracy

Training hyperparameter	Range	Number of Options
Batch size	[16, 512]	10
Learning rate	[1e-4, 1e-1]	10
Momentum	[0.1, 0.99]	10
Weight decay	[1e-5, 1e-1]	10
Number of layers	{1, 2, 3, 4}	4
Max units per layer	[64, 1024]	10
Dropout	[0.0, 1.0]	10

40,000,000
combinations!

Data-Driven (Adaptive) Approach



Existing Umbrellas of Black-Box Optimization

Naïve approaches:

- Grid search
- Random search
- Manual tuning

Data-driven approaches:

- Local search
- Evolutionary algorithms
- Bayesian optimization
- Reinforcement learning
- LLM-based agent

New Methods for Black-Box Optimization

Naïve approaches:

- Grid search
- Random search
- Manual tuning

Data-driven approaches:

- Local search
- Evolutionary algorithms
- Bayesian optimization
- Reinforcement learning
- LLM-based agent

Contributions of new methods proposed in my work:

1. Novel connection to related decision problems
2. Principled decision rules
3. Competitive empirical performance

New methods under this umbrella

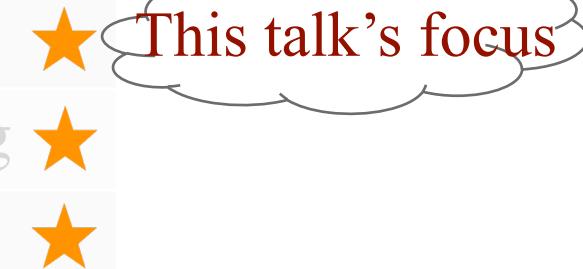
New Methods for Black-Box Optimization

Naïve approaches:

- Grid search
- Random search
- Manual tuning

Data-driven approaches:

- Local search
- Evolutionary algorithms
- Bayesian optimization
- Reinforcement learning
- LLM-based agent

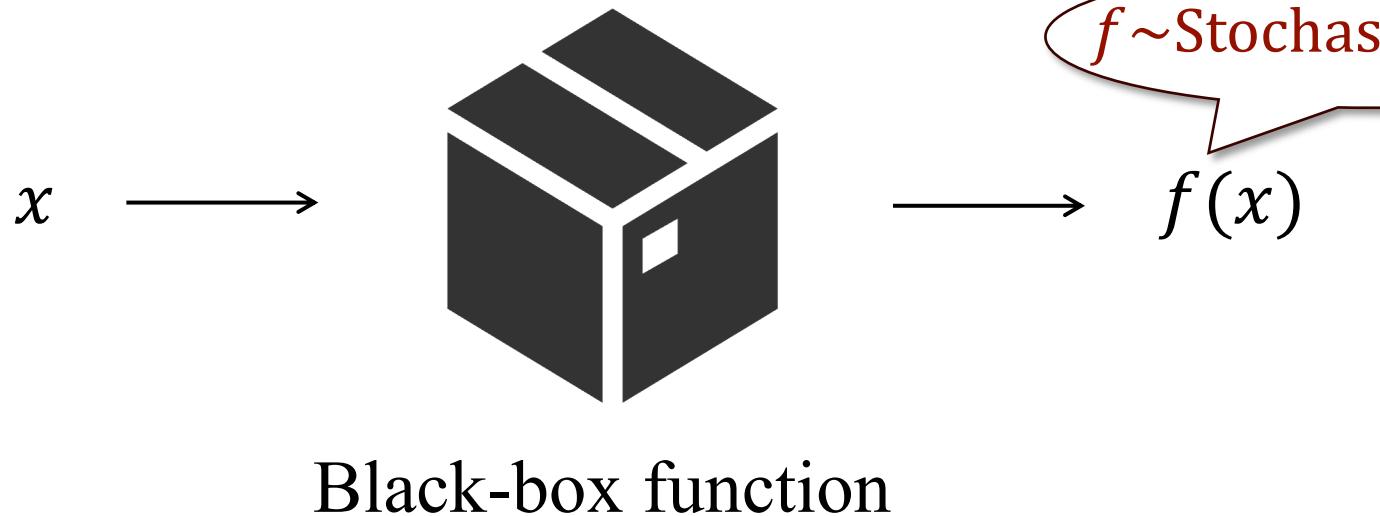


Contributions of new methods proposed in my work:

1. Novel connection to related decision problems
2. Principled decision rules
3. Competitive empirical performance

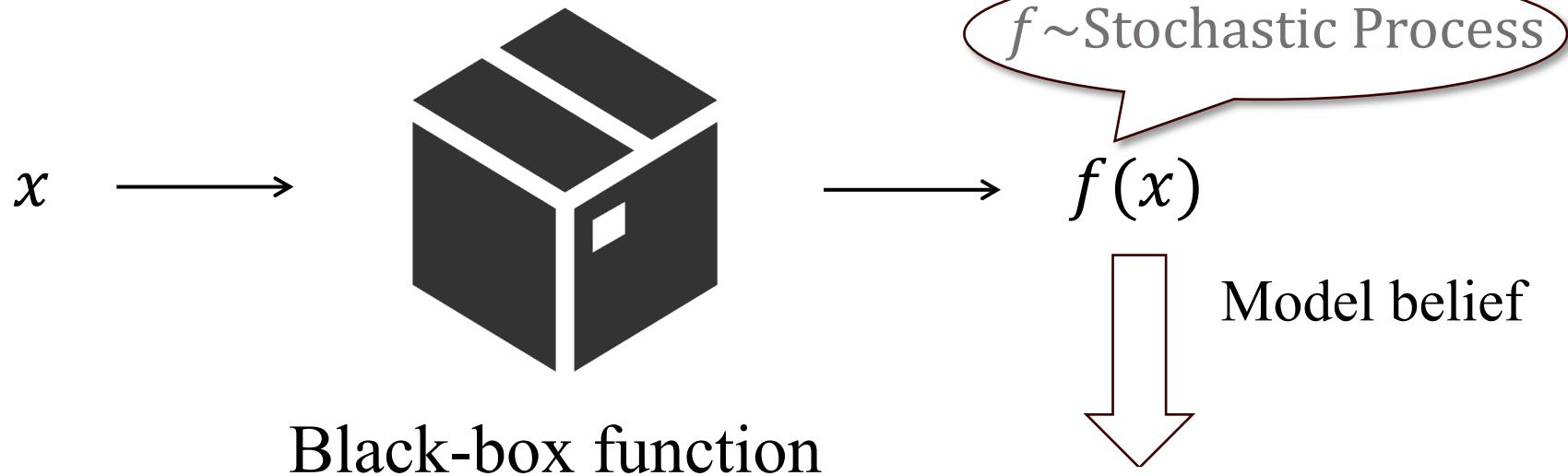
★ New methods under this umbrella

Bayesian Optimization



Bayesian Optimization

Time 0



Probabilistic model
(e.g., Gaussian process)

Bayesian Optimization

Time t

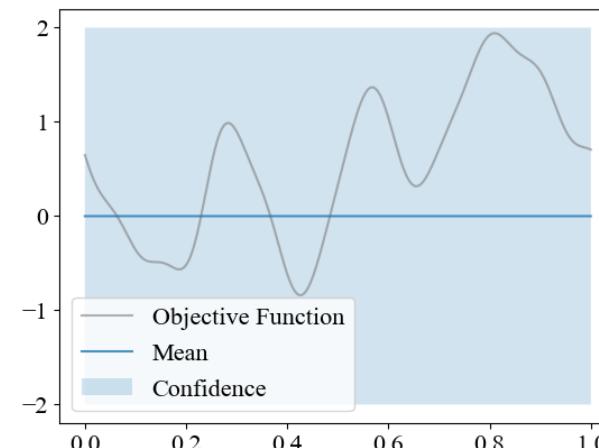
x_1, \dots, x_t

Black-box function

$f \sim \text{Stochastic Process}$

$f(x_1), \dots, f(x_t)$

Model belief



Probabilistic model
(e.g., Gaussian process)

Bayesian Optimization

Time t

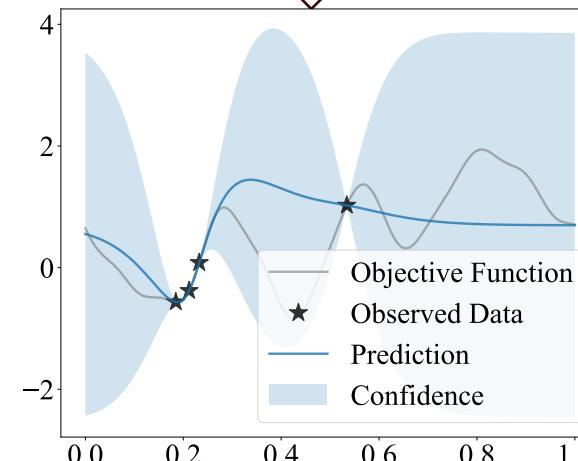
x_1, \dots, x_t

Black-box function

$f \sim \text{Stochastic Process}$

$f(x_1), \dots, f(x_t)$

Update belief
(Bayes' rule)



Probabilistic model
(e.g., Gaussian process)

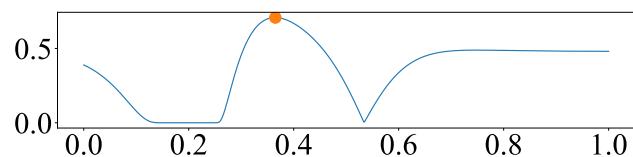
Bayesian Optimization

Time t

x_1, \dots, x_t

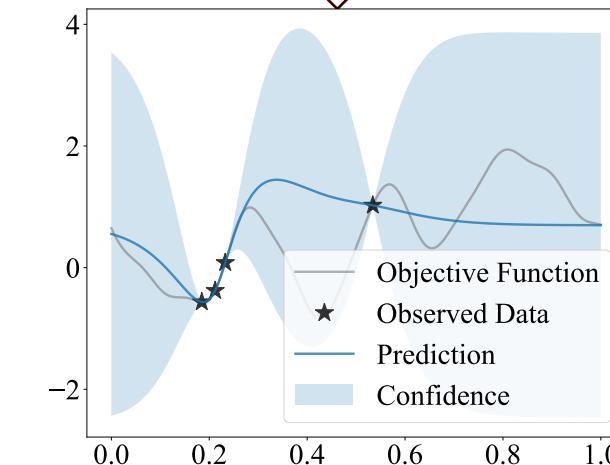
$f(x_1), \dots, f(x_t)$

Black-box function



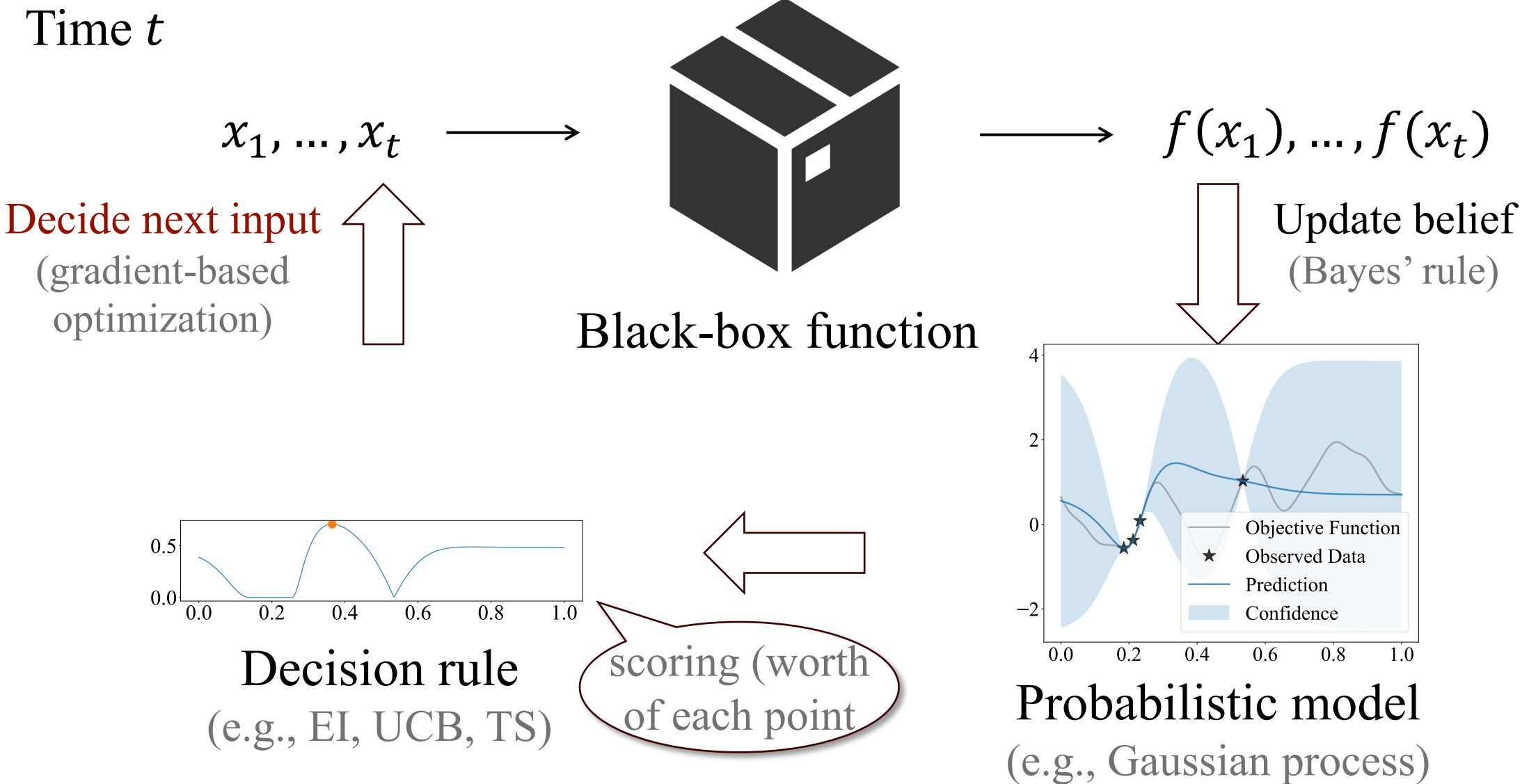
Decision rule
(e.g., EI, UCB, TS)

scoring (worth
of each point)



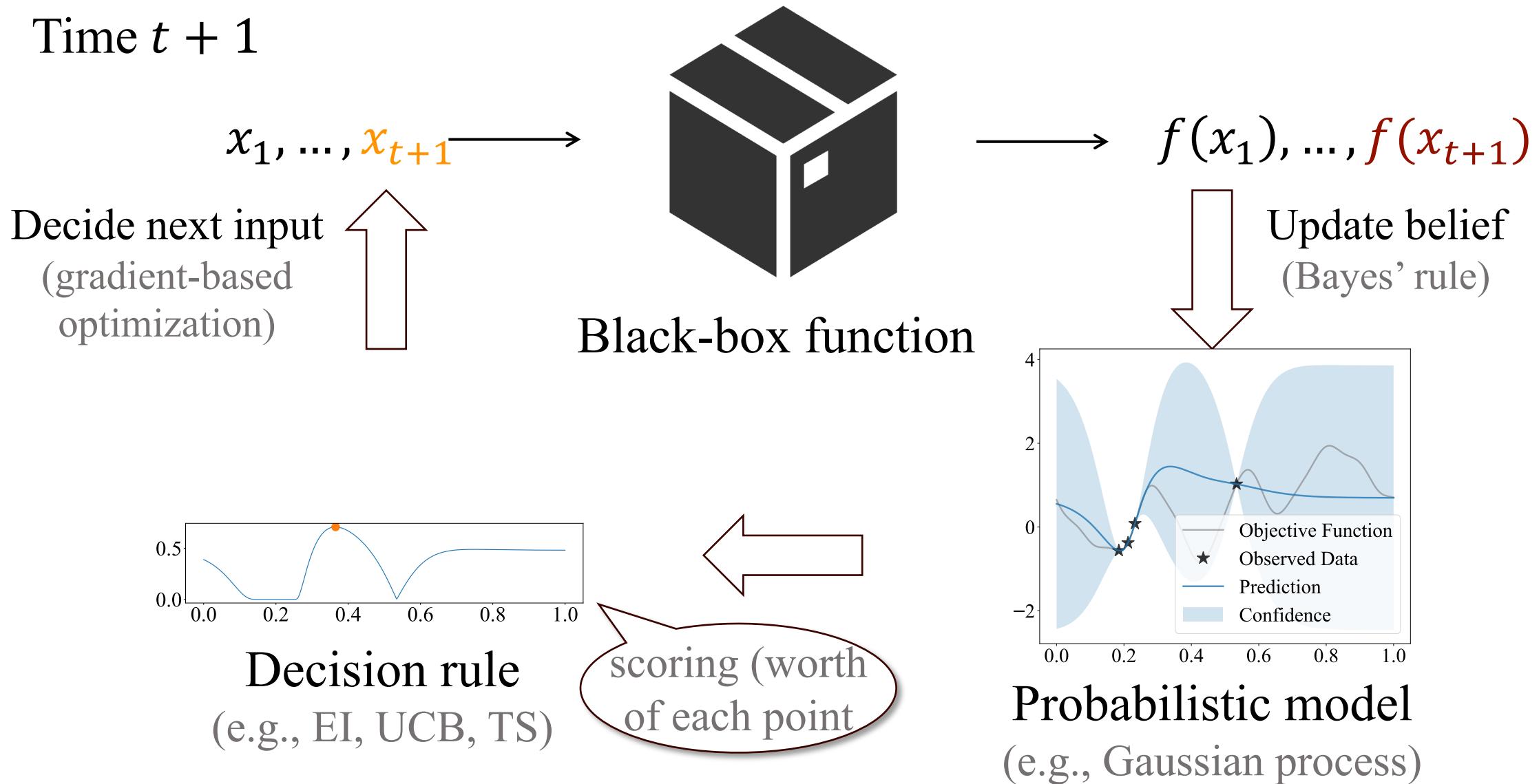
Probabilistic model
(e.g., Gaussian process)

Bayesian Optimization



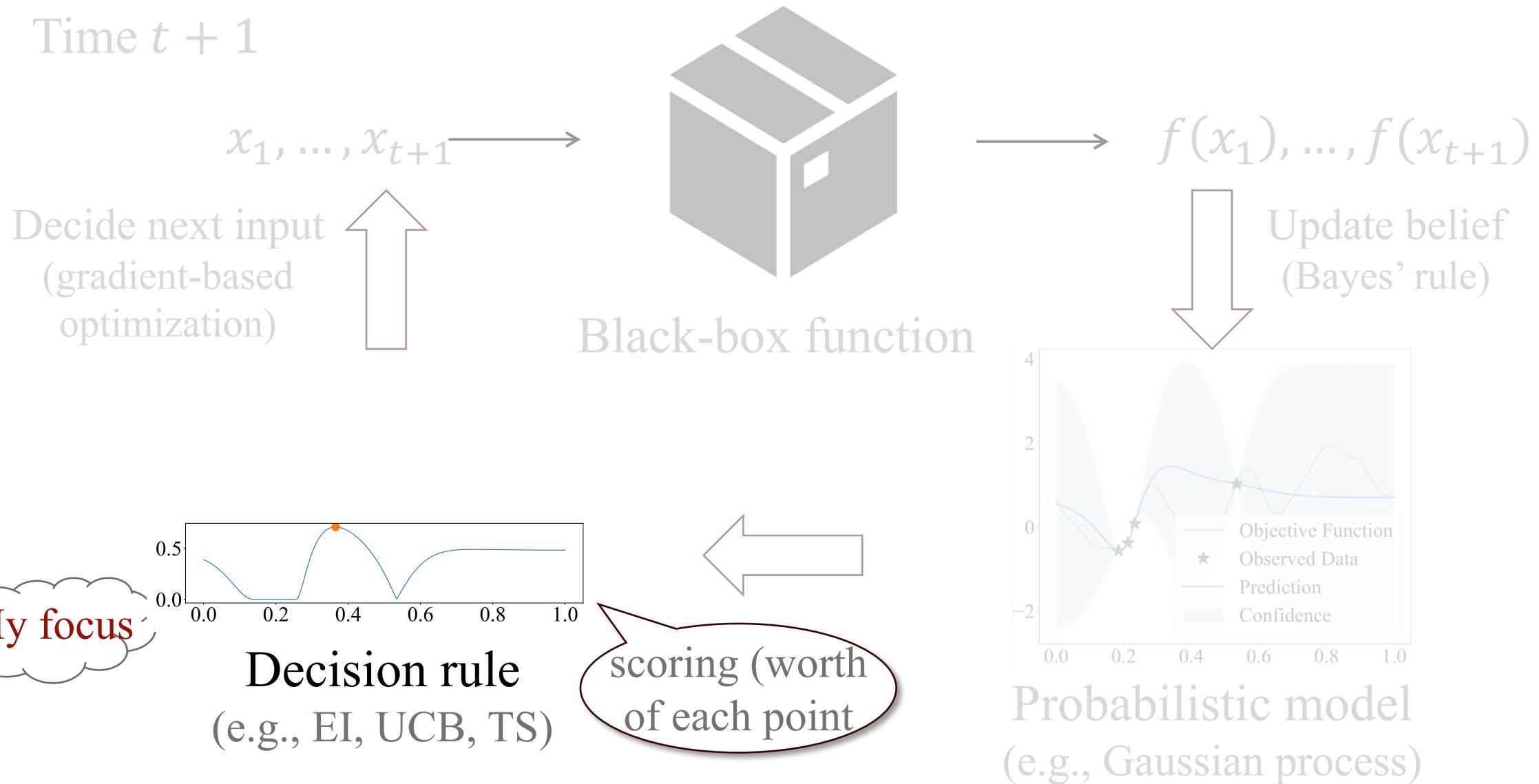
Bayesian Optimization

Time $t + 1$

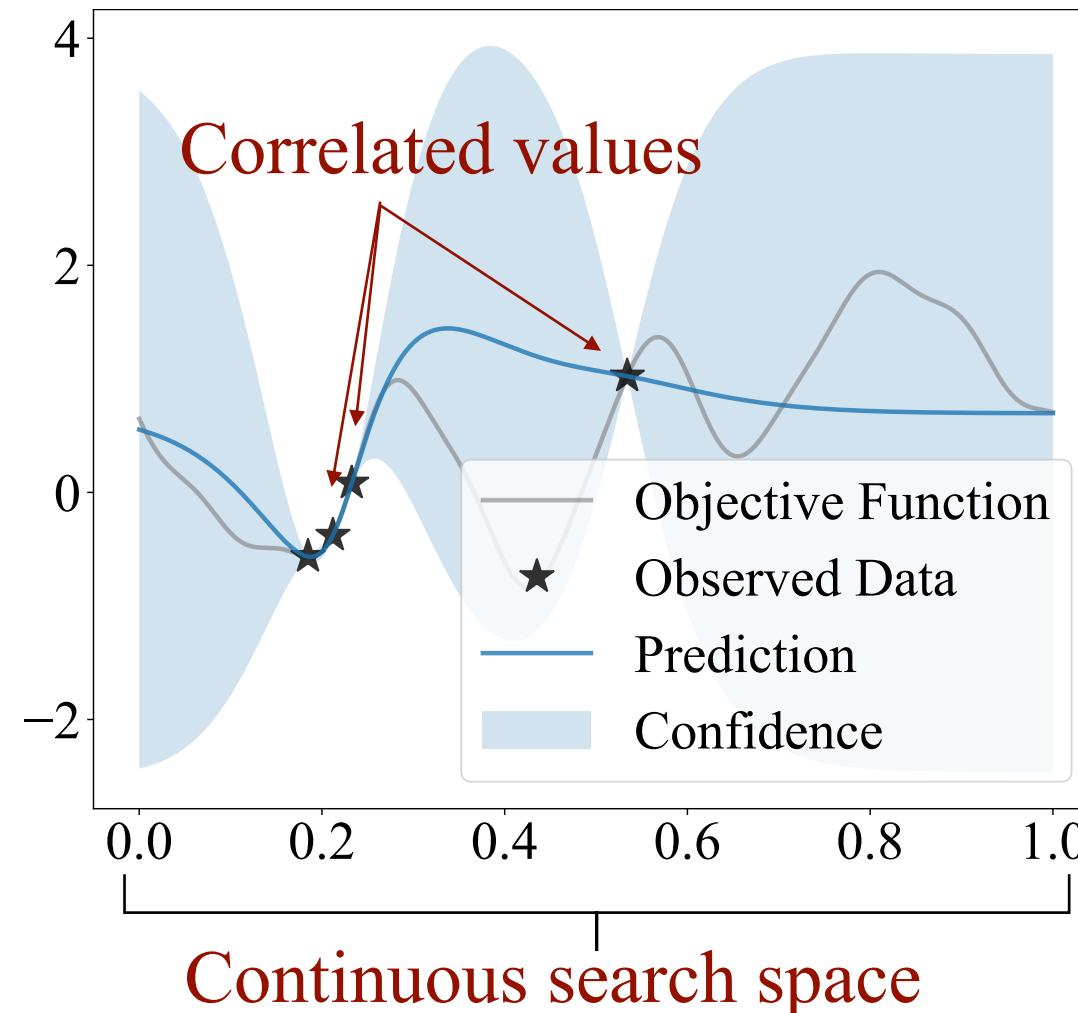


Bayesian Optimization

Time $t + 1$



Challenges in Decision Rule Design



Correlation & continuity \Rightarrow Intractable MDP \Rightarrow Optimal policy unknown

Popular Decision Rule: Expected Improvement

$$EI(x) = \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid x_1, \dots, x_t]$$

“improvement”

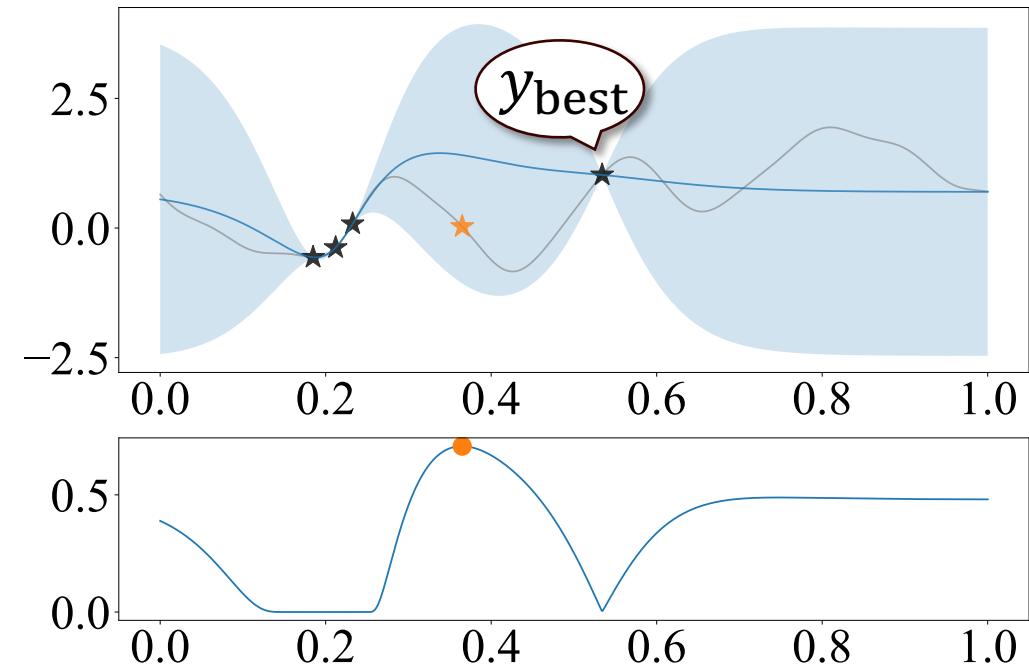
current best observed

data D

$$x_{t+1} = \max_x EI_{f|D}(x)$$

posterior distribution

One-step approximation to MDP



Expected improvement $EI(x)$

Popular Decision Rule: Expected Improvement

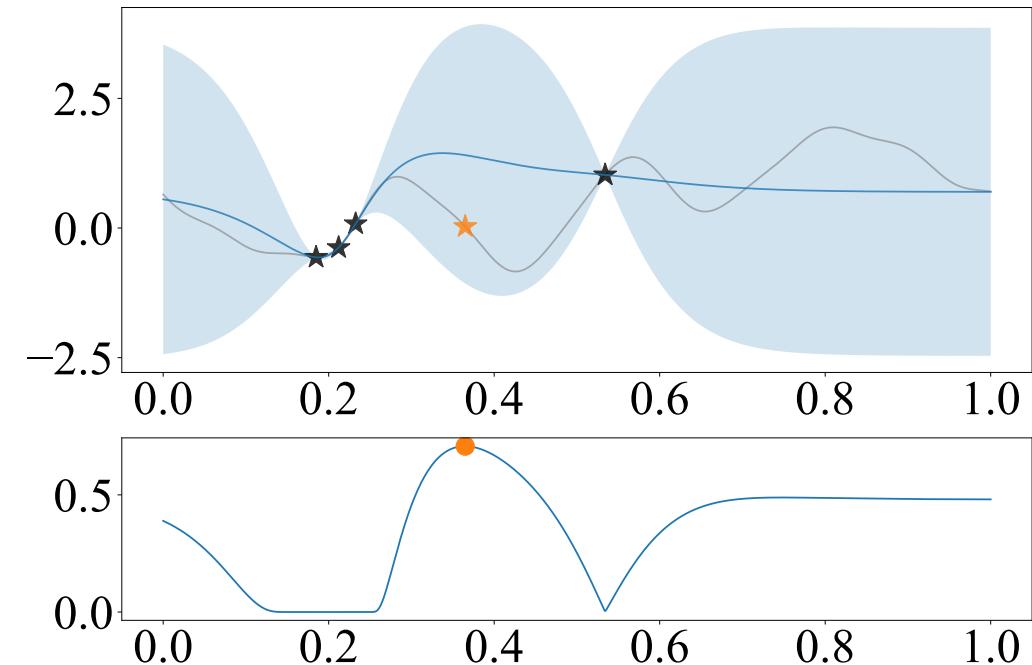
$$EI(x) = \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid x_1, \dots, x_t]$$

current best observed
data D
“improvement”

$$x_{t+1} = \max_x EI_{f|D}(x; y_{\text{best}})$$

posterior distribution

One-step approximation to MDP

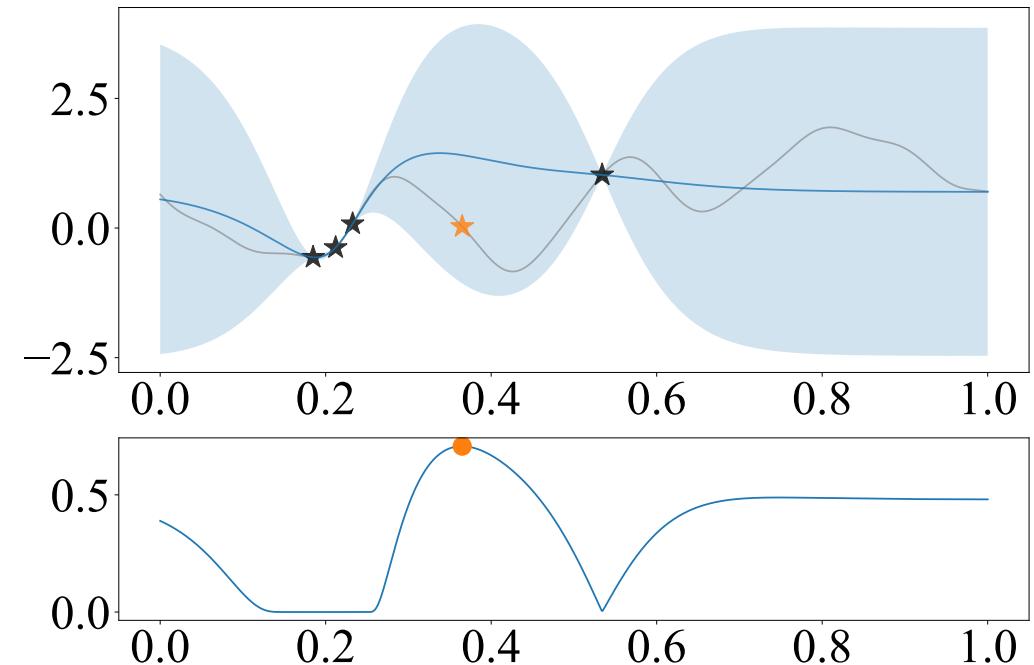


Expected improvement $EI(x)$

Improvement-based
design principle

Existing Design Principles

- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)

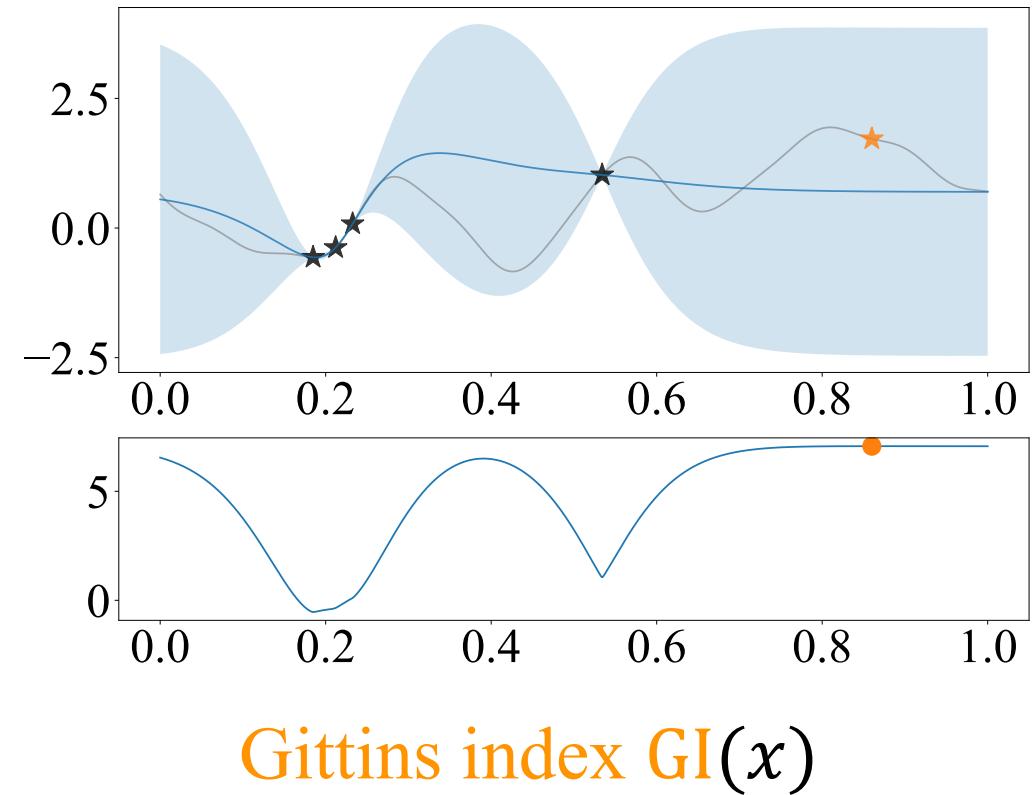


Expected improvement $EI(x)$

Improvement-based
design principle

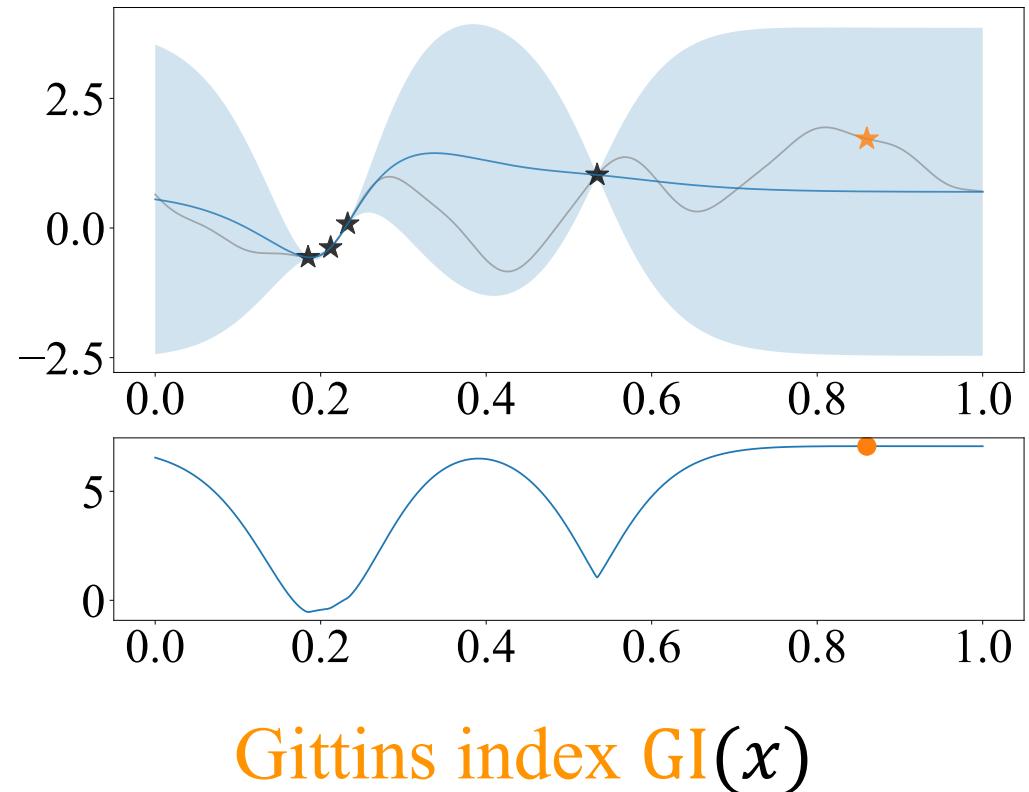
New Design Principle: Gittins Index

- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- **Gittins Index**



New Design Principle: Gittins Index

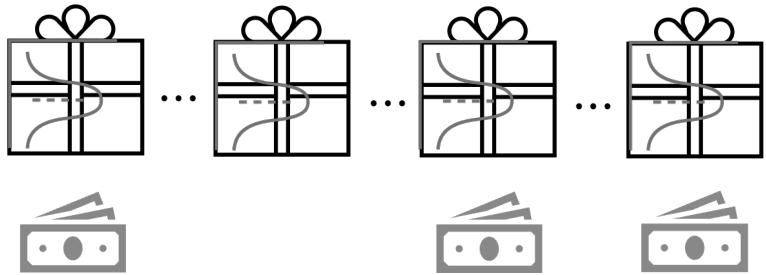
- Improvement-based (e.g., EI)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- **Gittins Index**



? Why another principle?

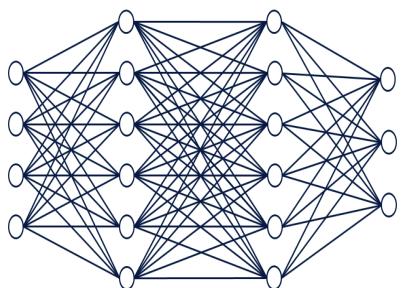
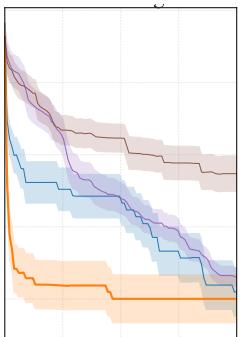
Our Contribution: Gittins Index Principle

Novel connection



Link to **Pandora's Box** problem
& **Gittins index** theory

Competitive empirical performance



Interests from practitioners (e.g., Meta)

Principled decision rules

- Varying evaluation costs
- Adaptive stopping time

Unified framework for
selection and stopping

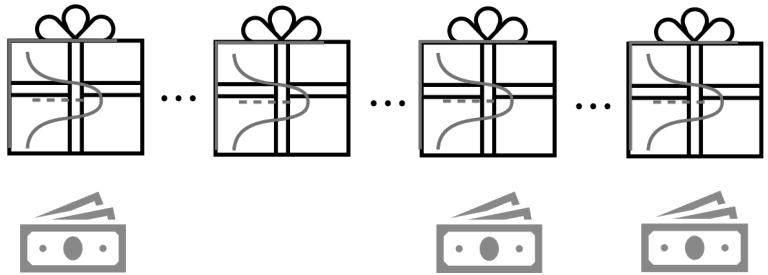
Future potential

- Adaptive response sampling
- Best-prompt identification
- Chain-of-thought selection

Application to **efficient LLM**

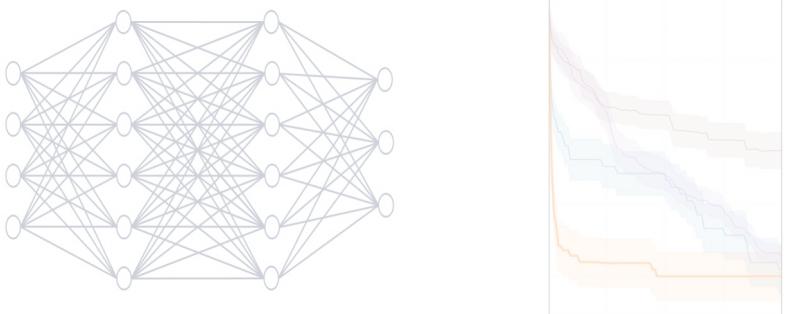
Our Contribution: Gittins Index Principle

Novel connection



Link to **Pandora's Box** problem
& **Gittins index** theory

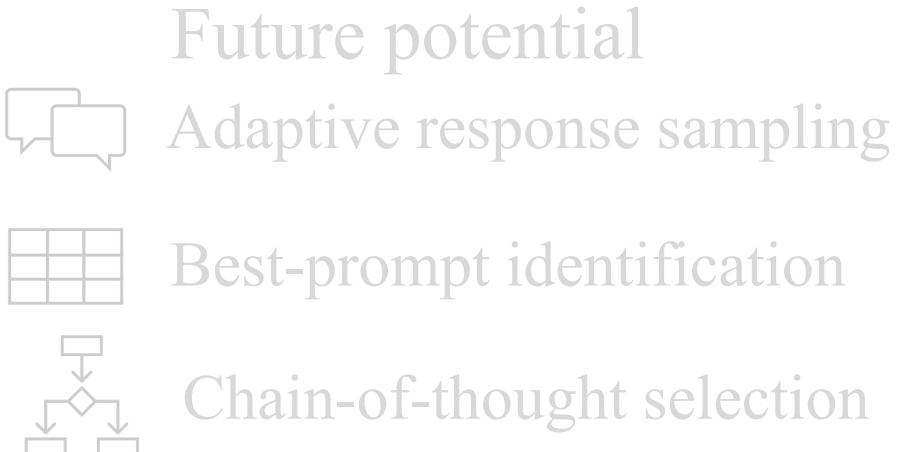
Competitive empirical performance



Interests from practitioners (e.g., Meta)

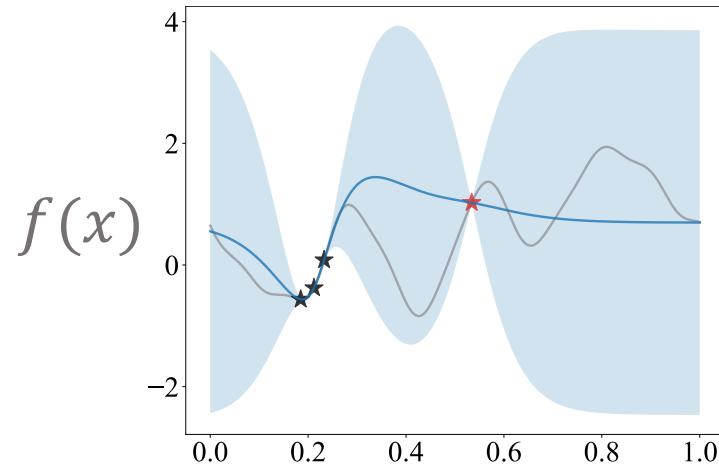
Principled decision rules

Unified framework for cost-aware
selection and stopping



Application to efficient LLM

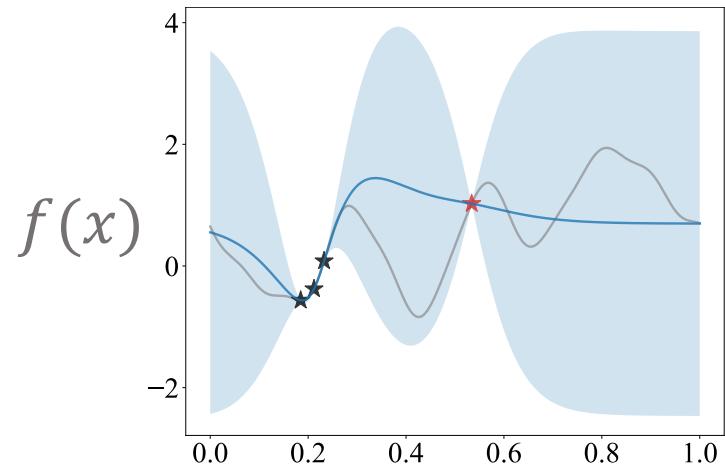
Bayesian Optimization



Continuous search space

Correlated function values

Bayesian Optimization



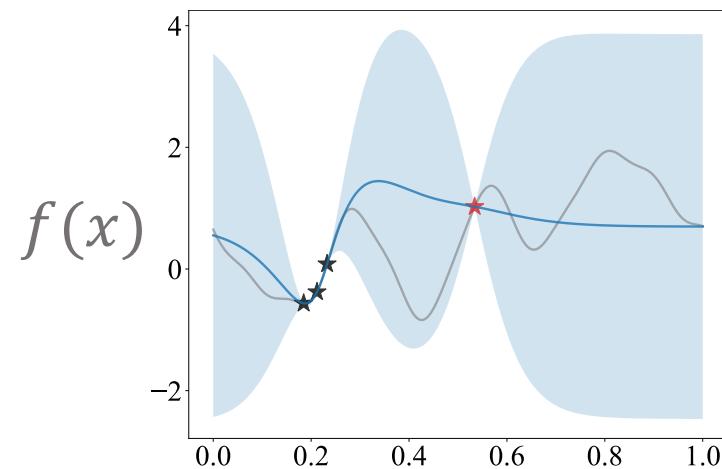
Continuous search space \Rightarrow

Discrete

Correlated function values \Rightarrow

Independent

Bayesian Optimization



Continuous search space

Correlated function values

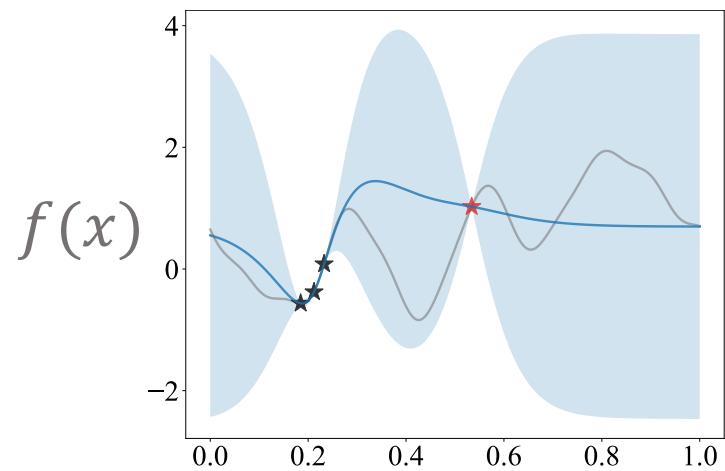
Pandora's Box

[Weitzman'79]

Discrete

Independent

Bayesian Optimization

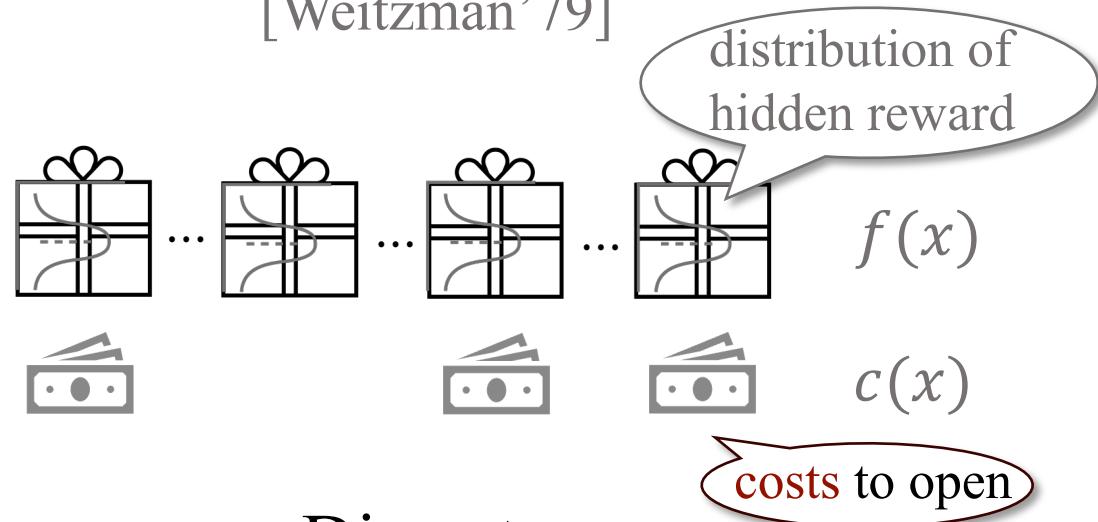


Continuous search space

Correlated function values

Pandora's Box

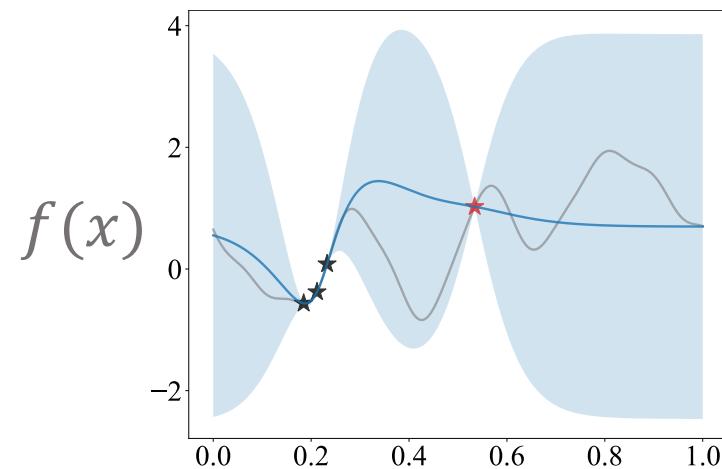
[Weitzman'79]



Discrete

Independent

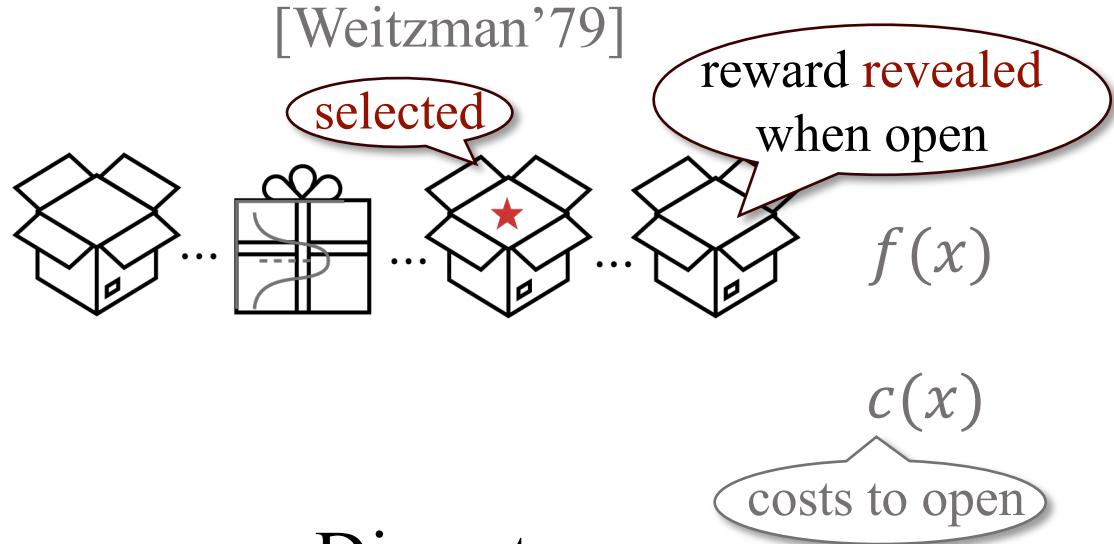
Bayesian Optimization



Continuous search space

Correlated function values

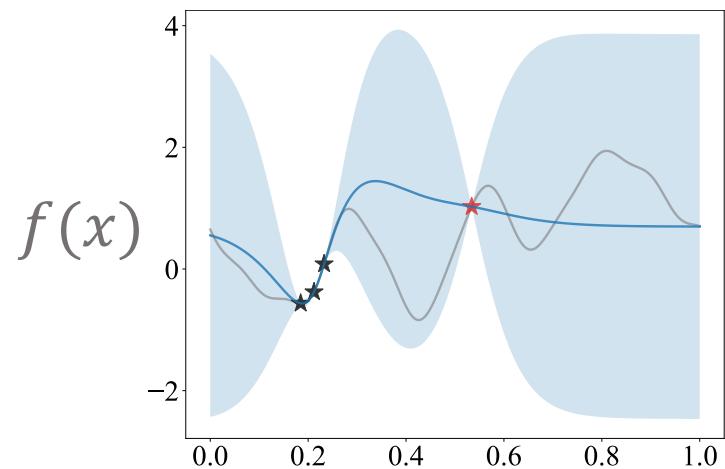
Pandora's Box



Discrete

Independent

Bayesian Optimization

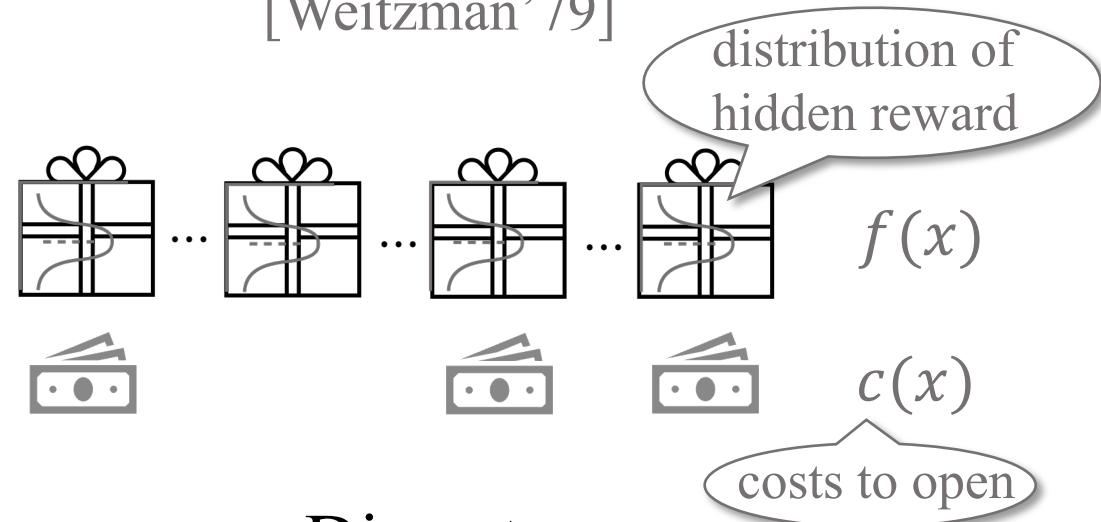


Continuous search space

Correlated function values

Pandora's Box

[Weitzman'79]

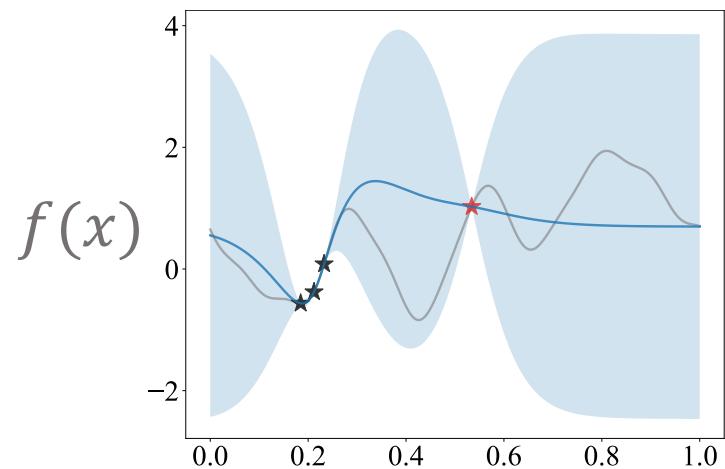


Discrete

Independent

Optimal policy: Gittins index

Bayesian Optimization

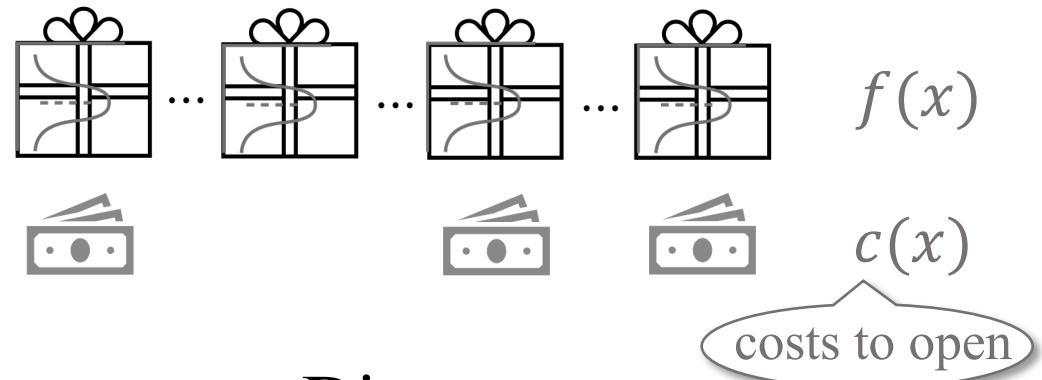


Continuous search space

Correlated function values

Pandora's Box

[Weitzman'79]



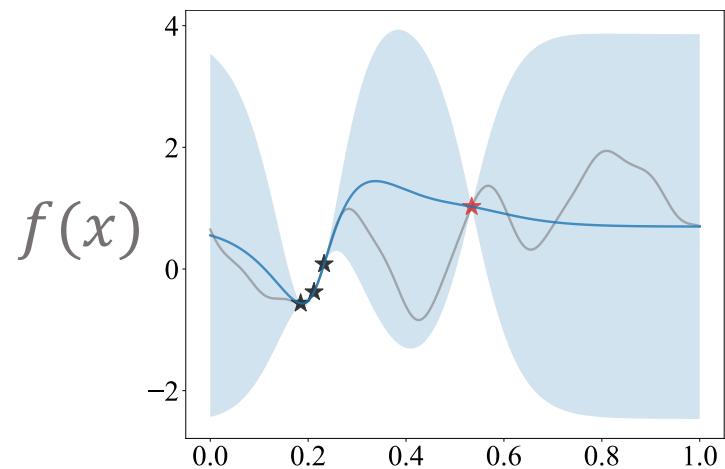
Discrete

Independent

How to translate?

Optimal policy: Gittins index

Bayesian Optimization

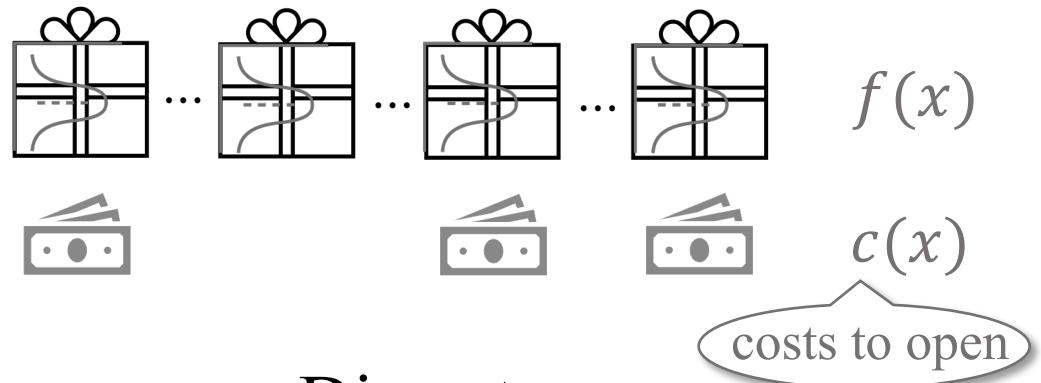


Continuous search space

Correlated function values

Pandora's Box

[Weitzman'79]



Discrete

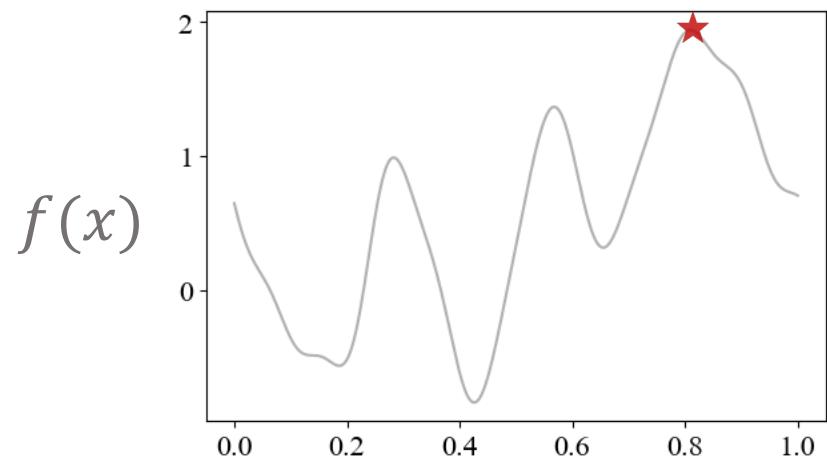
Independent

Our policy: $\text{GI}_{f|D}(x; c)$ \leftarrow Optimal policy: $\text{GI}_f(x; c)$

incorporate posterior
take continuum limit

New!

Bayesian Optimization



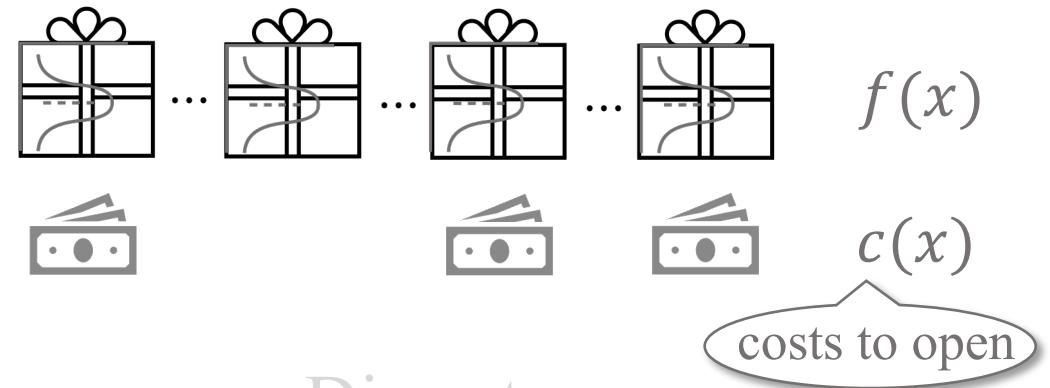
Continuous

Correlated

Our policy: $\text{GI}_{f|D}(x; c(x))$
How to compute?

Pandora's Box

[Weitzman'79]



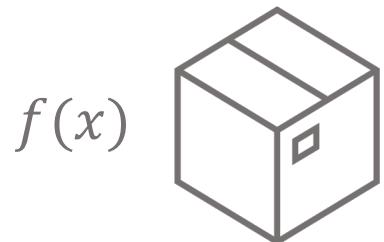
Discrete

Independent

incorporate posterior
take continuum limit
Optimal policy: $\text{GI}_f(x; c(x))$

Intuition

Exploration

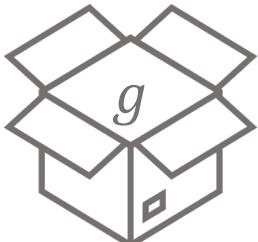


Open closed box

$$\mathbb{E}[\max(f(x), g)] - c(x)$$

Should one open box? Depend on g !

Exploitation

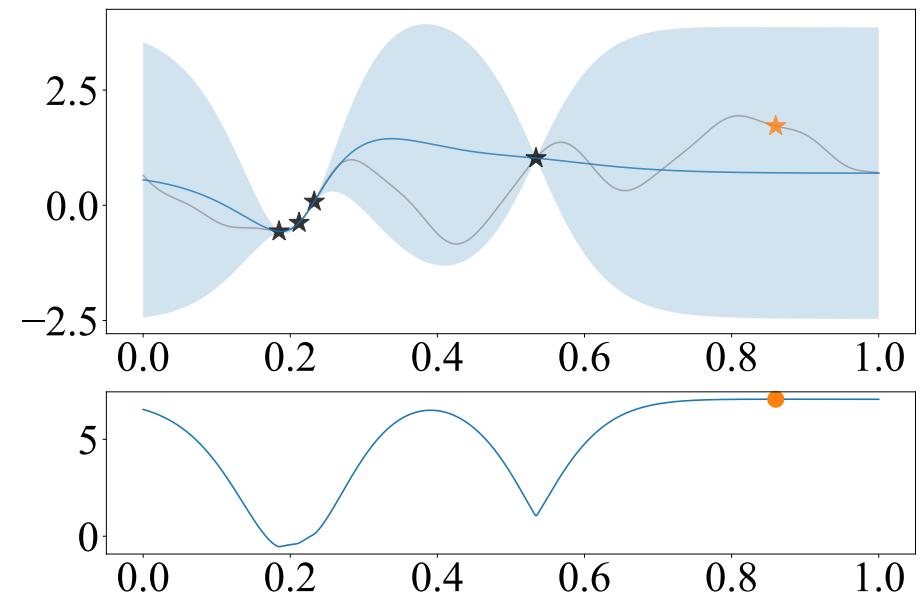


vs.

Take opened box

$$g$$

Gittins Index



$\text{GI}_{f|D}(x; c) :=$ solution g s.t.
 $\mathbb{E}[\max(f(x), g) | D] - c(x) = g$

Intuition

Exploration



Open closed box

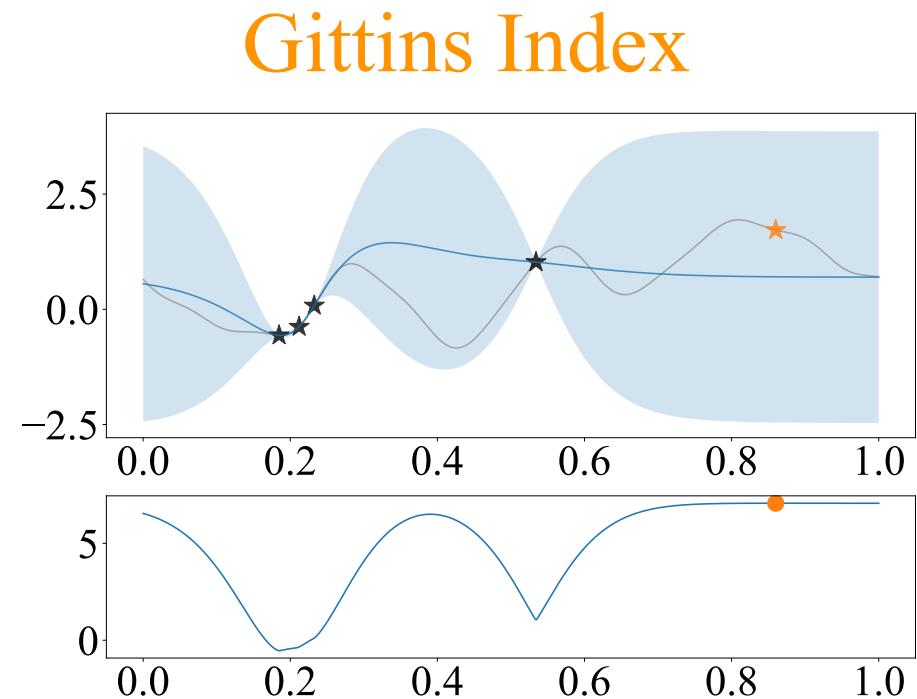
$$\mathbb{E}[\max(f(x), g)] - c(x)$$

Should one open box? Depend on g !

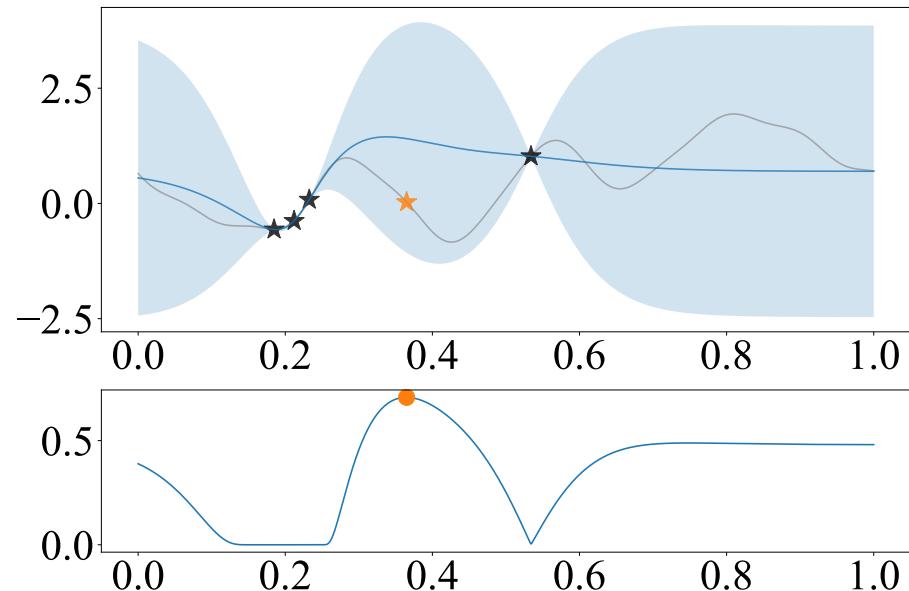
Exploitation

VS.

Take opened box

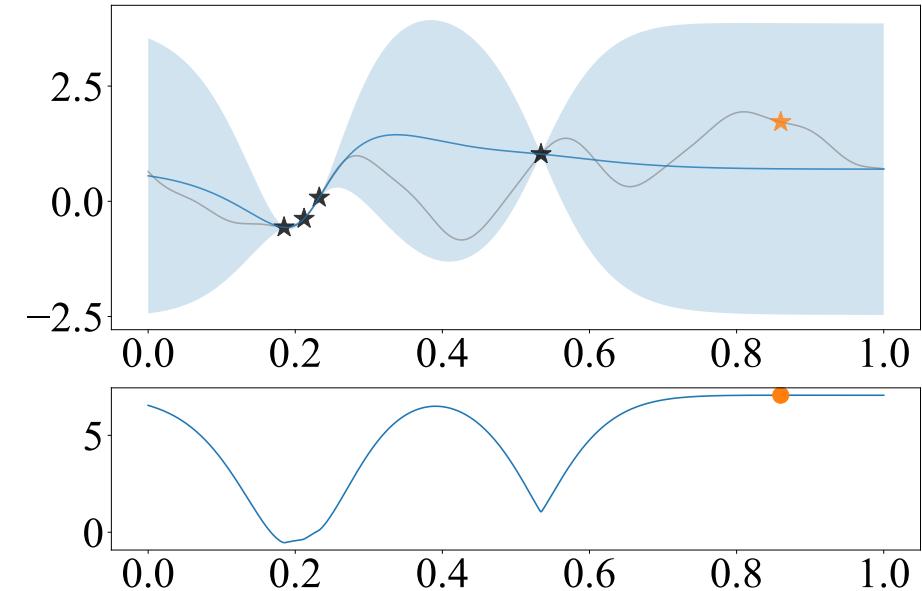


Expected Improvement



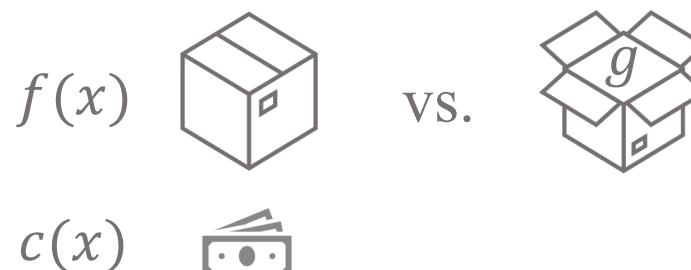
$$\text{EI}_{f|D}(x) := \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$$

Gittins Index



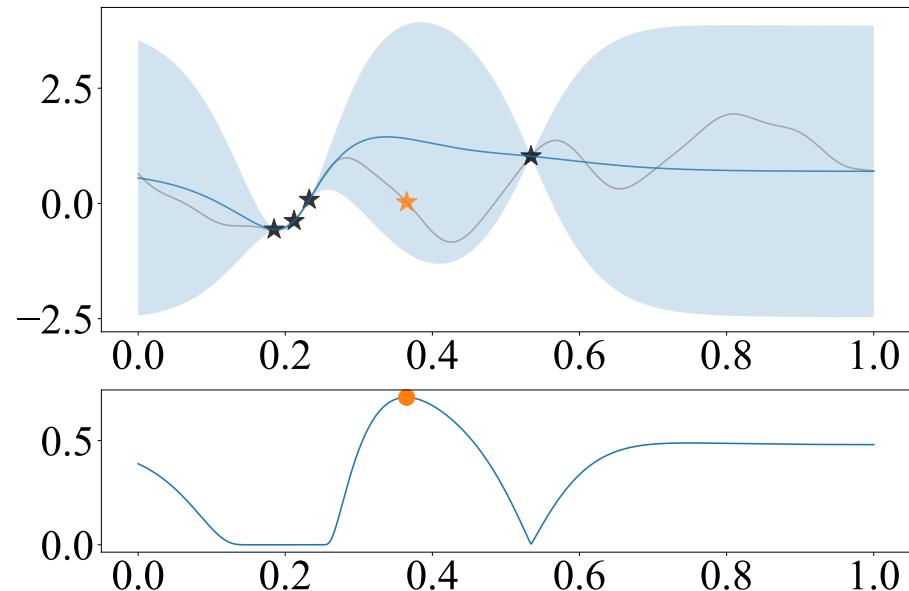
$$\text{GI}_{f|D}(x; c) := \text{solution } g \text{ s.t. } \text{EI}_{f|D}(x; g) = c(x)$$

where $\text{EI}_{f|D}(x; g) := \mathbb{E}[\max(f(x) - g, 0) \mid D]$



Exploration Exploitation

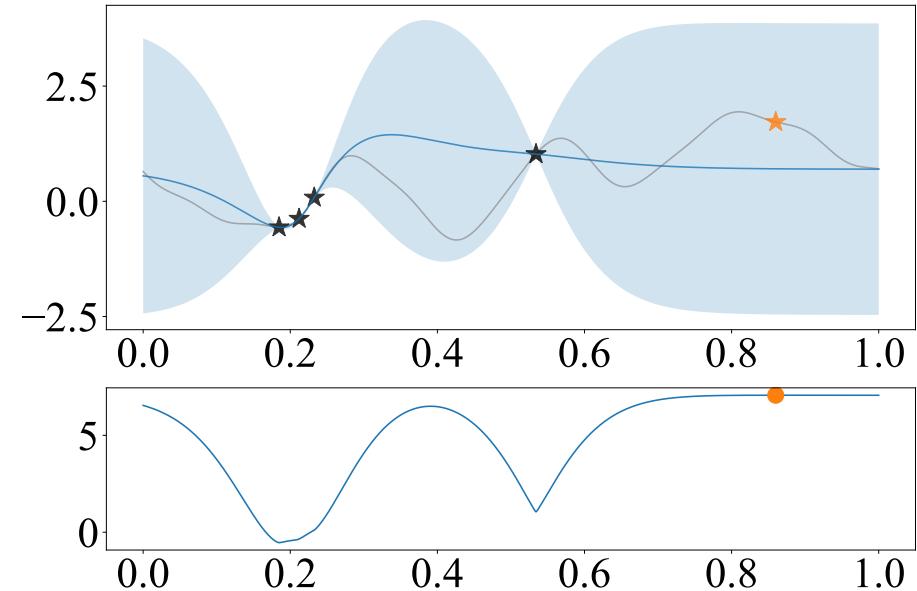
Expected Improvement



$$\text{EI}_{f|D}(x) := \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$$

Temporal simplification to MDP
(One-step)

Gittins Index

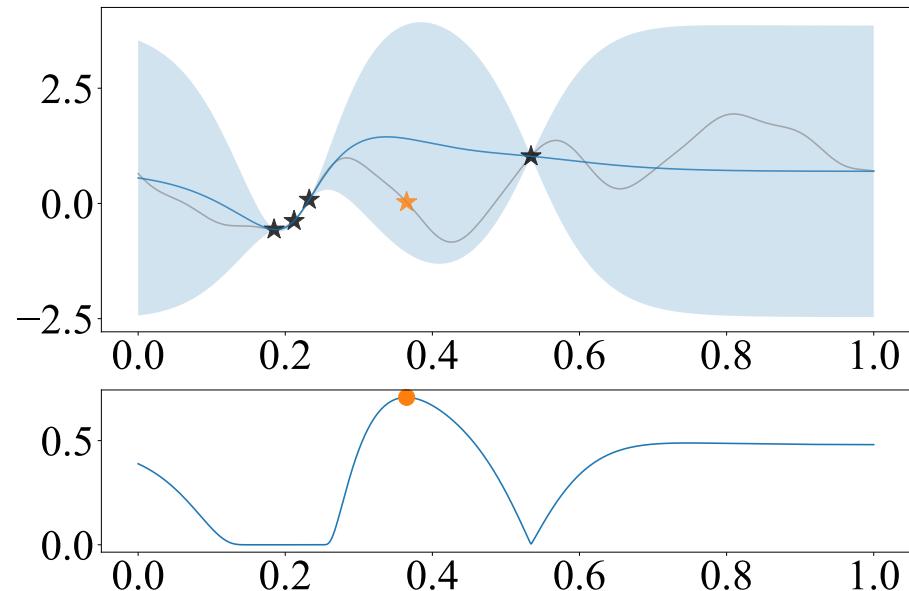


$$\text{GI}_{f|D}(x; c) := \text{solution } g \text{ s.t. } \text{EI}_{f|D}(x; g) = c(x)$$

where $\text{EI}_{f|D}(x; g) := \mathbb{E}[\max(f(x) - g, 0) \mid D]$

Spatial simplification to MDP

Expected Improvement



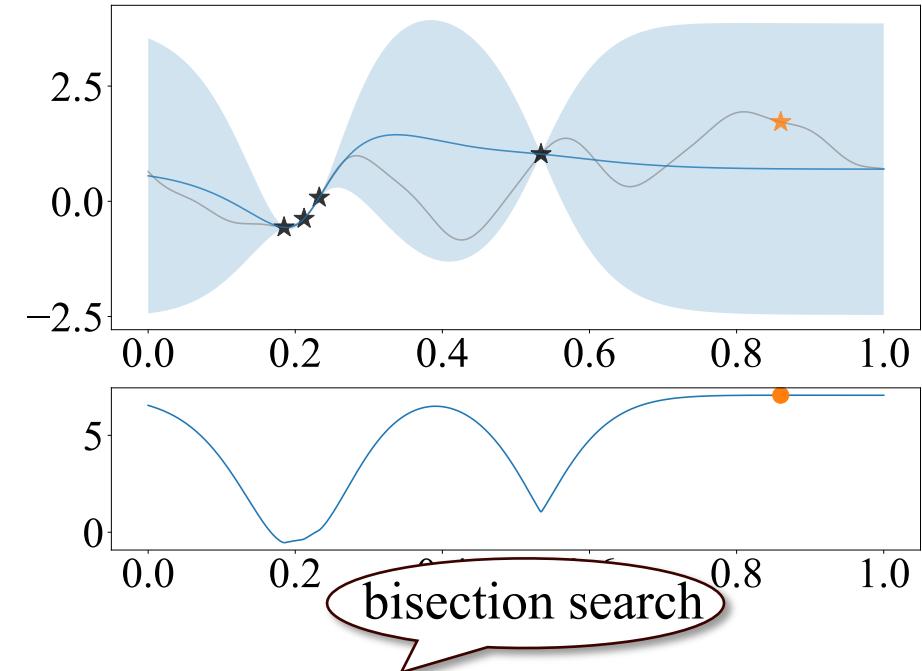
$$\text{EI}_{f|D}(x) := \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$$

Temporal simplification to MDP

Both are **principled** and **easy-to-compute!**

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Gittins Index



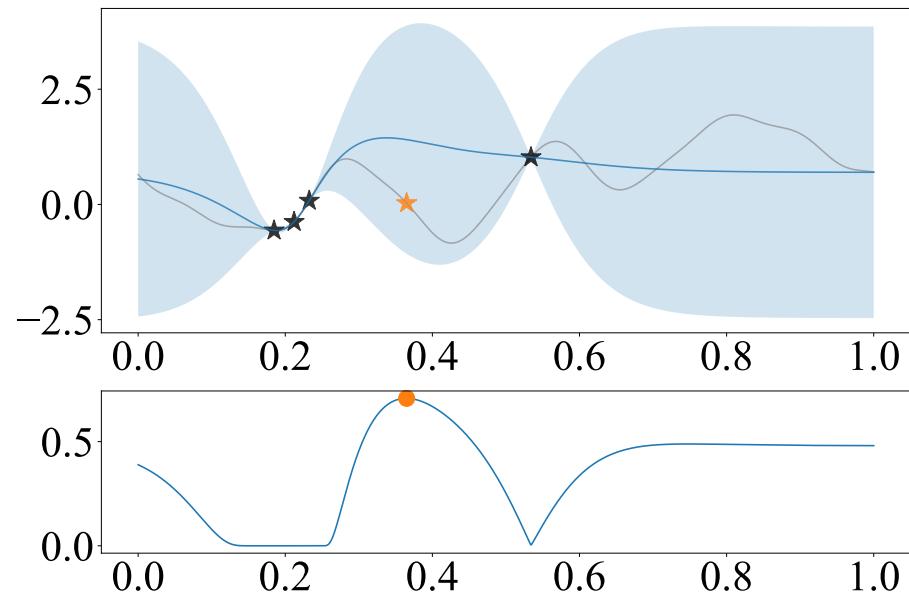
$$\text{GI}_{f|D}(x; c) := \text{solution } g \text{ s.t. } \text{EI}_{f|D}(x; g) = c(x)$$

where $\text{EI}_{f|D}(x; g) := \mathbb{E}[\max(f(x) - g, 0) \mid D]$

analytical expression

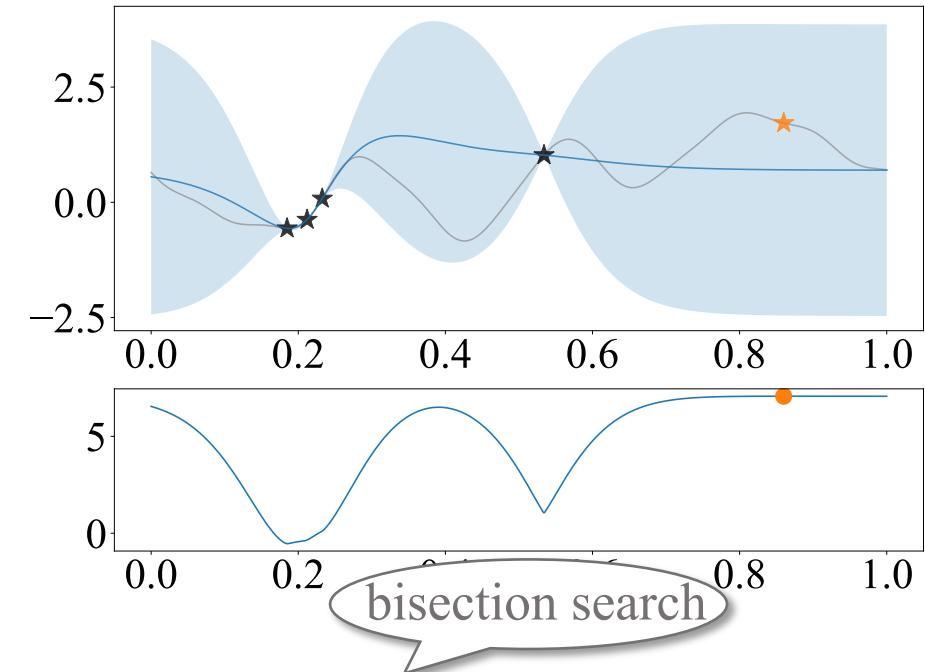
Spatial simplification to MDP

Expected Improvement



$$EI_{f|D}(x) := \mathbb{E}[\max(f(x) - y_{\text{best}}, 0) \mid D]$$

Gittins Index



$$GI_{f|D}(x; c) := \text{solution } g \text{ s.t. } EI_{f|D}(x; g) = c(x)$$

where $EI_{f|D}(x; g) := \mathbb{E}[\max(f(x) - g, 0) \mid D]$

Google DeepMind

FunBO: Discovering new acquisition functions for
Bayesian Optimization with FunSearch

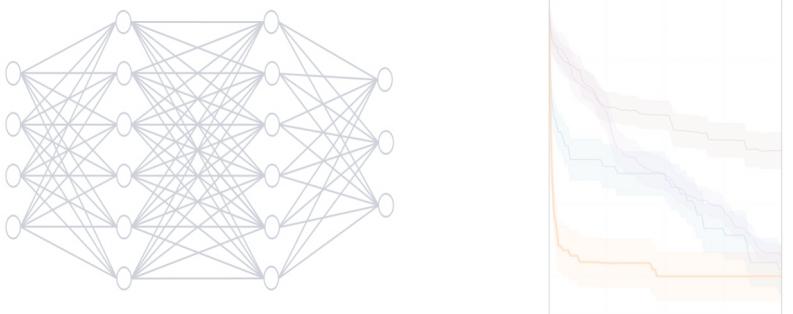
hard to discover GI

Our Contribution: Gittins Index Principle

Novel connection

Link to Pandora's Box problem
& Gittins index theory

Competitive empirical performance



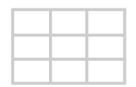
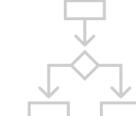
Interests from practitioners (e.g., Meta)

Principled decision rules

- Varying evaluation costs
- Adaptive stopping time

Unified framework for
selection and stopping

Future potential

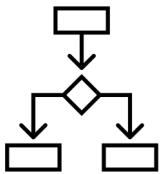
- Adaptive response sampling
-  Best-prompt identification
-  Chain-of-thought selection

Application to efficient LLM

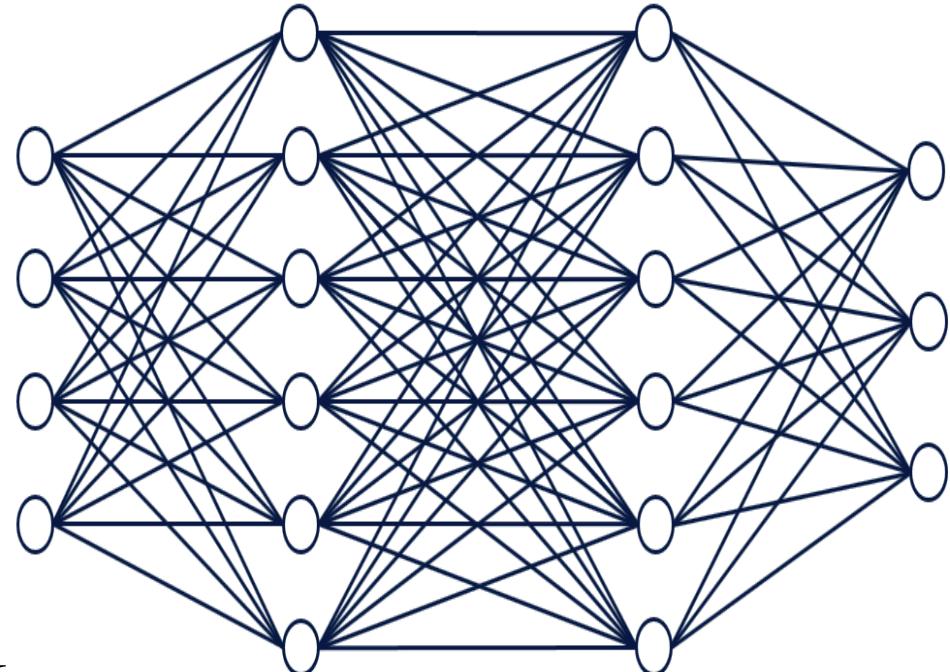
Under-explored Information for Better Decisions

Varying evaluation costs

Smart stopping time



Observable multi-stage feedback



How does existing principle incorporate them?

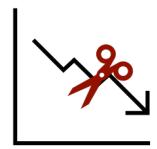
Varying evaluation costs

$$\text{EIPC}(x; c) = \text{EI}(x) / c(x)$$

[Snoek et al.'12]

Arbitrarily bad

[Astudillo et al.'21]



Smart stopping time

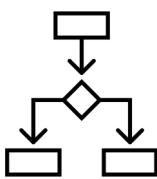
$$\tau: \text{EI}(x_\tau) \leq \theta$$

[Locatelli'97,

Nguyen et al.'17,

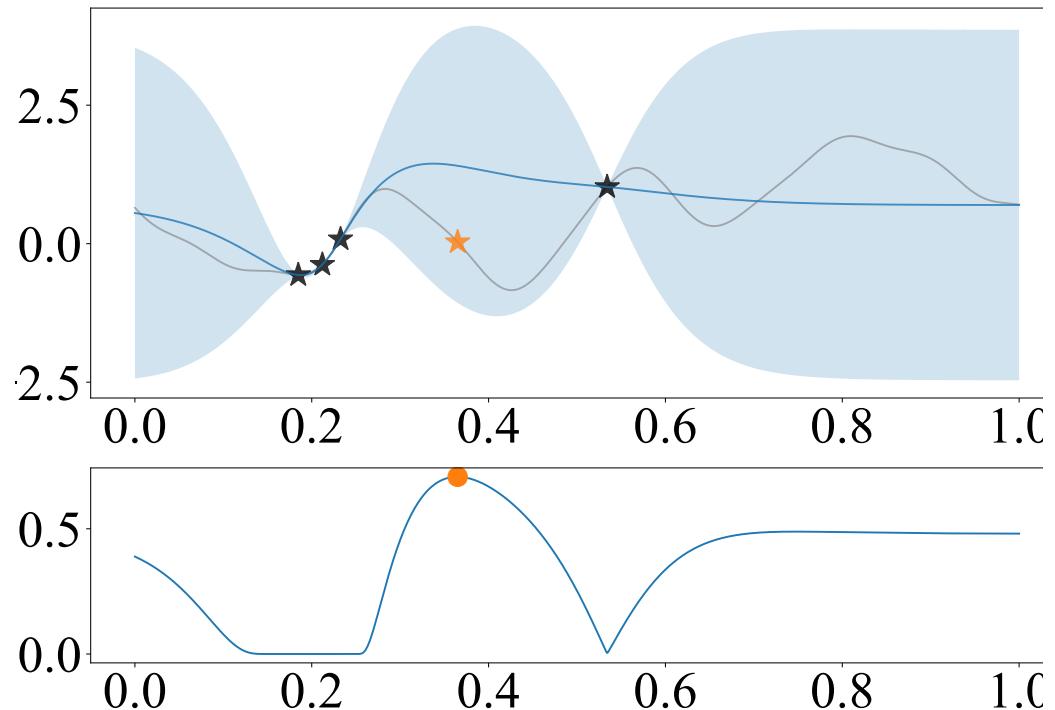
Ishibashi et al.'23]

Which threshold?



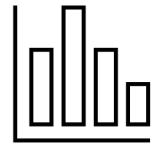
Observable multi-stage feedback

?



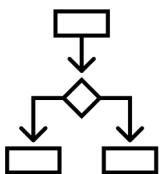
Expected improvement $\text{EI}(x)$

Under-explored Information for Better Decisions



Varying evaluation costs

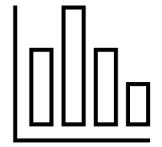
Smart stopping time



Observable multi-stage feedback

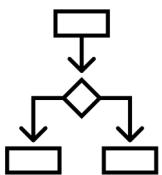
New design principle:
Gittins index

Why Gittins index?



Varying evaluation costs

Smart stopping time



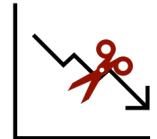
Observable multi-stage feedback

New design principle:
Gittins index

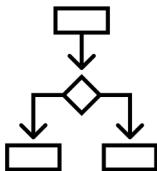
Optimal in related sequential
decision problems

Why Gittins index?

Varying evaluation costs
Features in **Pandora's box**



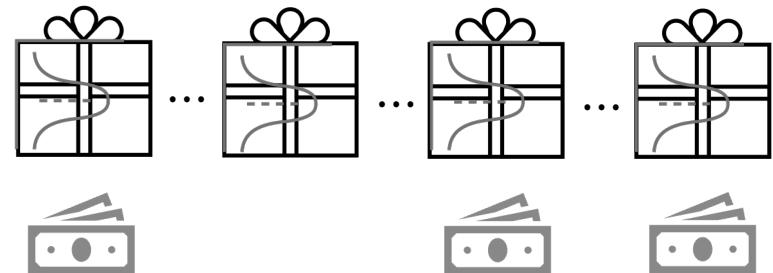
Smart stopping time
Features in **Pandora's box**



Observable multi-stage feedback

New design principle:
Gittins index

Optimal in related sequential
decision problems



Why Gittins index?

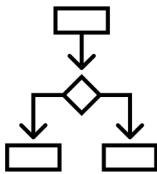
Varying evaluation costs

Features in Pandora's box



Smart stopping time

Features in Pandora's box

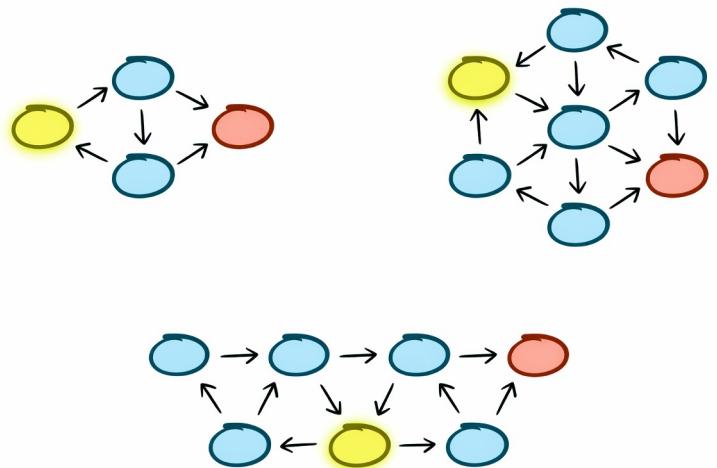


Observable multi-stage feedback

Features in **Markov chain selection**

New design principle:
Gittins index

Optimal in related sequential
decision problems



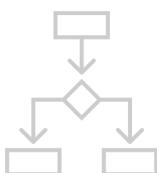
Why Gittins index?

Varying evaluation costs

Features in **Pandora's box**

Smart stopping time

Features in **Pandora's box**



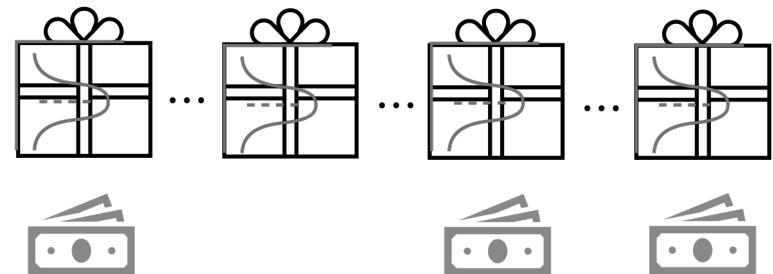
Observable multi-stage feedback

Features in Markov chain selection

"Cost-aware Bayesian Optimization via the
Pandora's Box Gittins Index." NeurIPS'24.

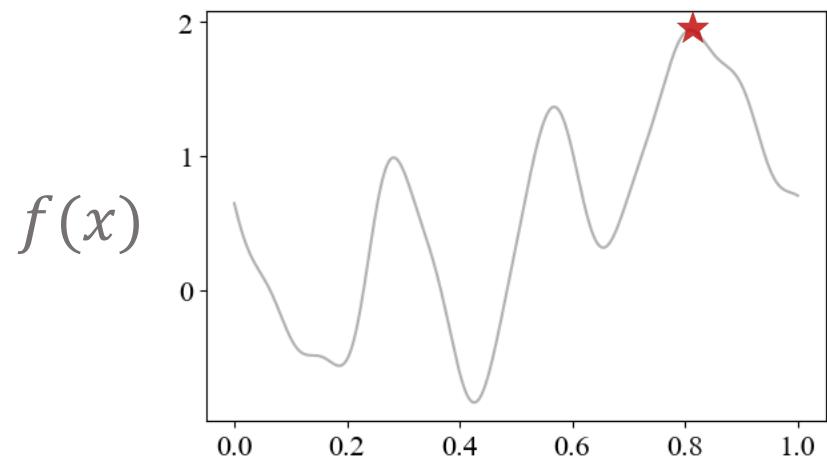
New design principle:
Gittins index

Optimal in related sequential
decision problems



"Cost-aware Stopping for Bayesian
Optimization." Under review.

Bayesian Optimization



Continuous

Correlated

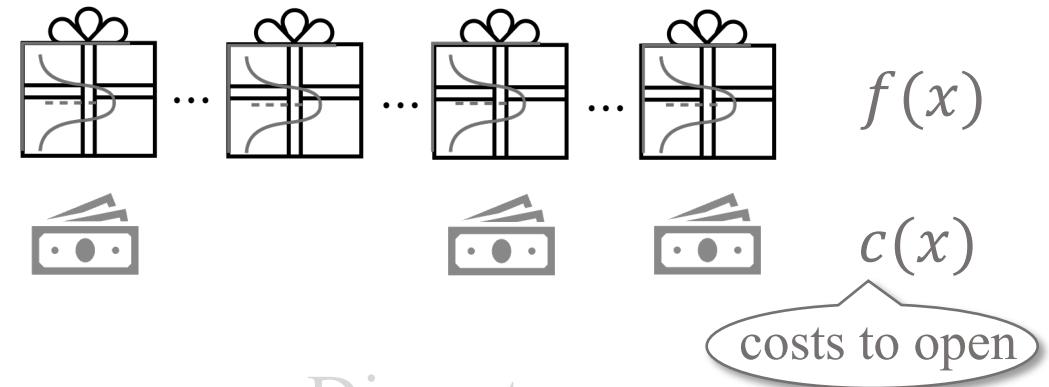
Cost-unaware

Fixed-iteration

Our policy: $\text{GI}_{f|D}(x; c)$

Pandora's Box

[Weitzman'79]



Discrete

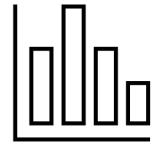
Independent

Cost-aware

Flexible-stopping

Optimal policy: $\text{GI}_f(x; c)$

Expected Improvement vs Gittins Index



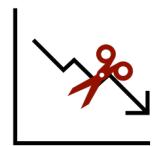
Varying evaluation costs

$$\text{EIPC}(x; c) = \text{EI}(x)/c(x)$$

Arbitrarily bad

$\text{GI}(x; c)$: = solution g s.t. $\text{EI}(x; g) = c(x)$

naturally incorporates costs



Smart stopping time

$$\tau: \text{EI}(x_\tau) \leq \theta$$

Which threshold?

$$\tau: \text{GI}(x_\tau; c) \leq y_{\text{best}}$$

$$\Leftrightarrow \tau: \text{EIPC}(x_\tau; c) \leq 1$$

derived shared stopping rule

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

"Cost-aware Stopping for Bayesian Optimization." Under review.

Theoretical Guarantee and Empirical Validation

Theorem (Safeguard Guarantee)

$$\mathbb{E}[R(\text{ours}; \text{PBGI})] \leq R[\text{stopping immediately}]$$

or LogEIPC

cost-adjusted regret

Implication:

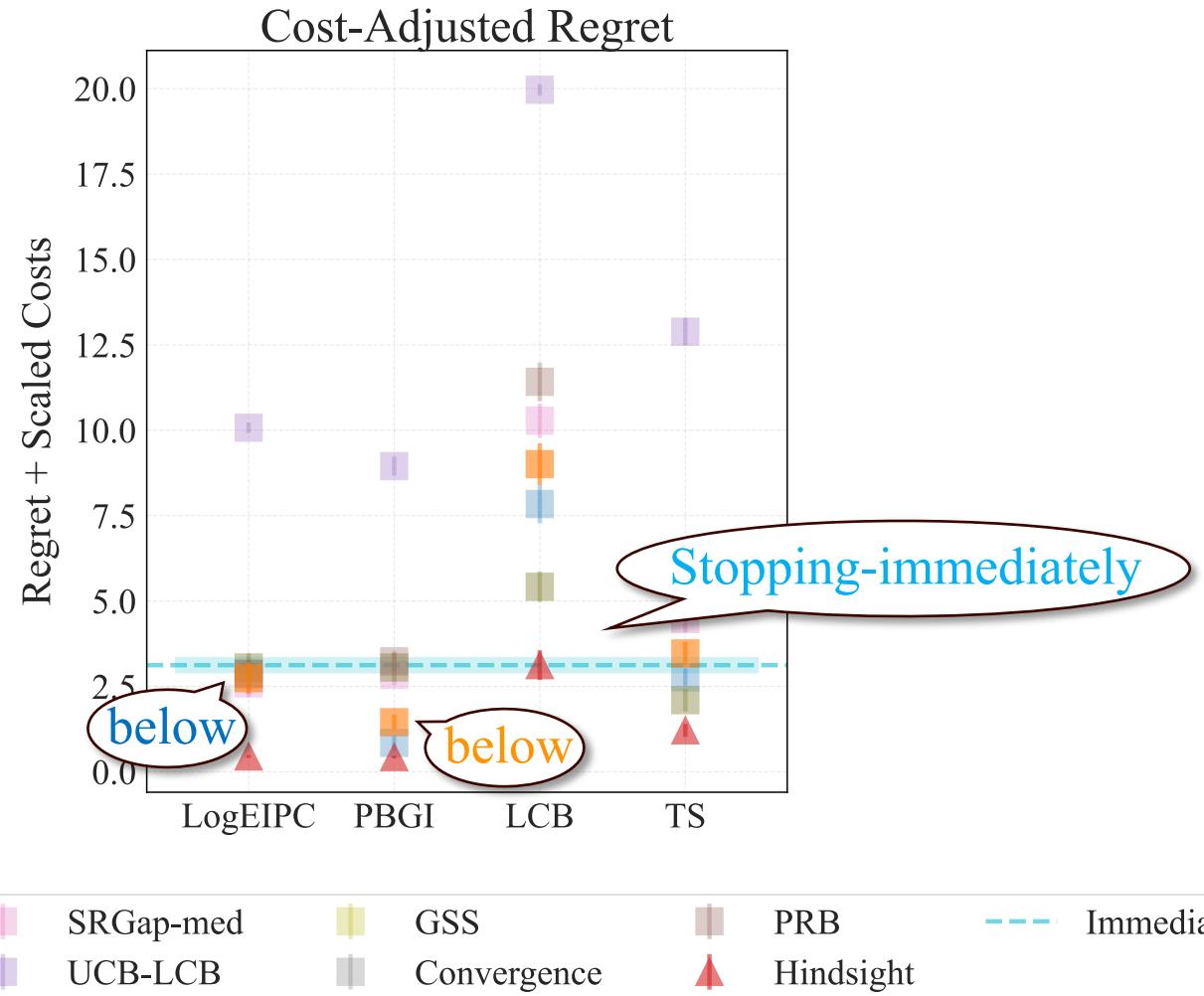
- Matches the **best achievable performance in the worst case** (evaluations are all very costly).
- Avoids **over-spending** — a property many cost-unaware stopping rules lack.

New

Proof idea: For all $t < \tau$, $\text{EI}(x_{t+1}) \geq c(x_{t+1})$.

stopping time

PBGI/LogEIPC
LogEIPC-med



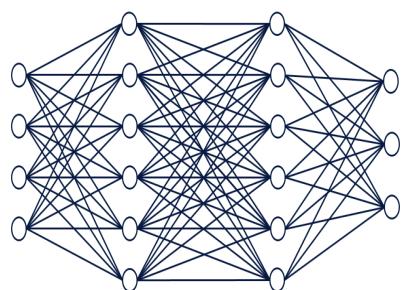
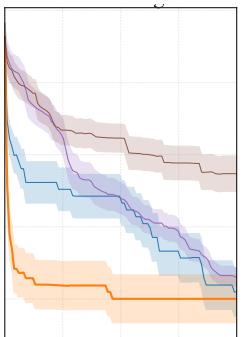
"Cost-aware Stopping for Bayesian Optimization." Under review.

Our Contribution: Gittins Index Principle

Novel connection

Link to Pandora's Box problem
& Gittins index theory

Competitive empirical performance

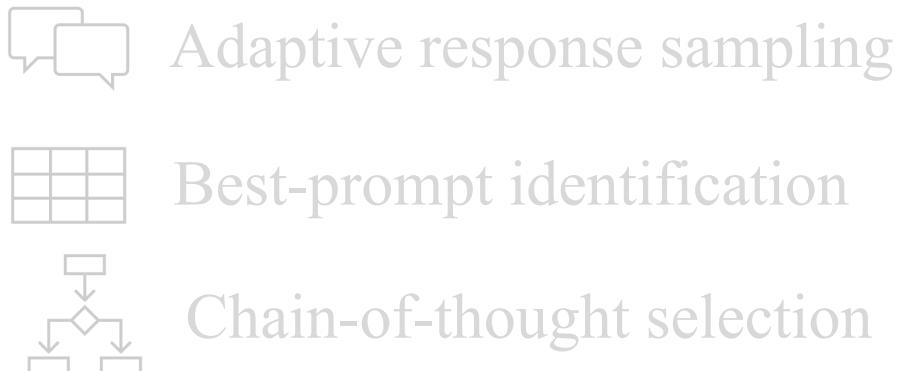


Interests from practitioners (e.g., Meta)

Principled decision rules

Unified framework for
selection and stopping

Future potential



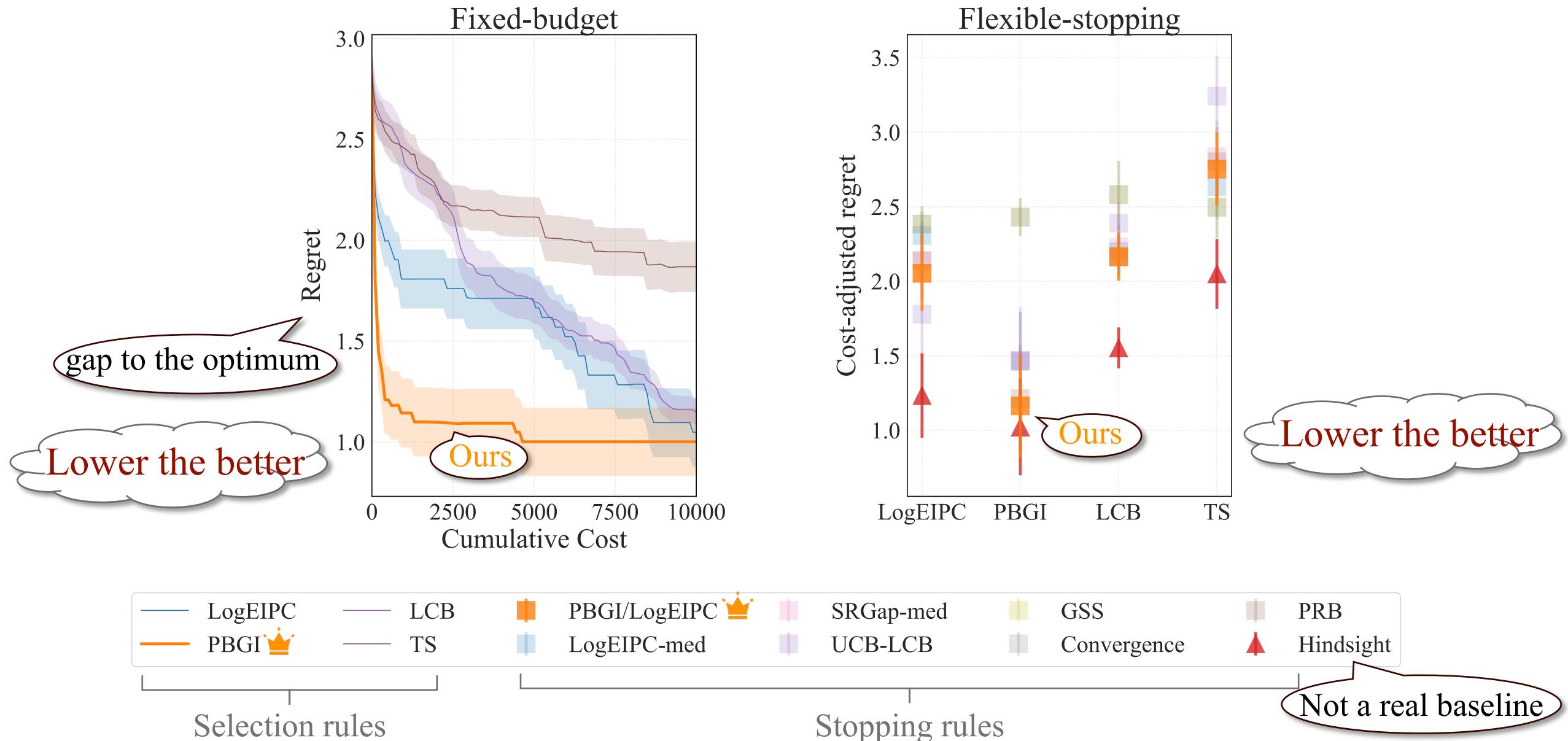
Adaptive response sampling

Best-prompt identification

Chain-of-thought selection

Application to efficient LLM

Gittins Index vs Baselines on AutoML Benchmark

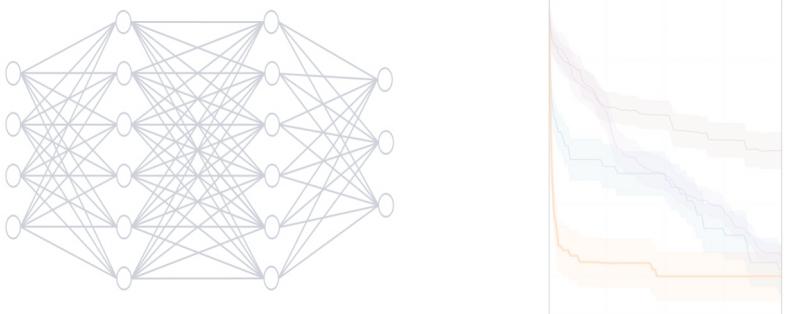


Our Contribution: Gittins Index Principle

Novel connection

Link to Pandora's Box problem
& Gittins index theory

Competitive empirical performance



Interests from practitioners (e.g., Meta)

Principled decision rules

Unified framework for cost-aware
selection and stopping

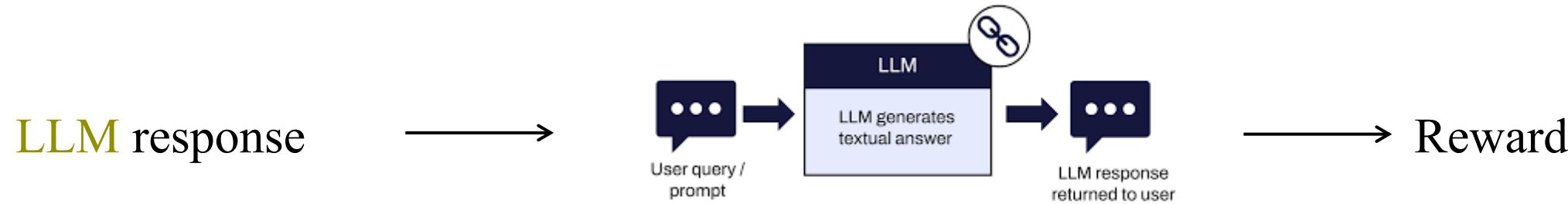
Future potential

- Adaptive response sampling
- Best-prompt identification
- Chain-of-thought selection

Application to efficient LLM

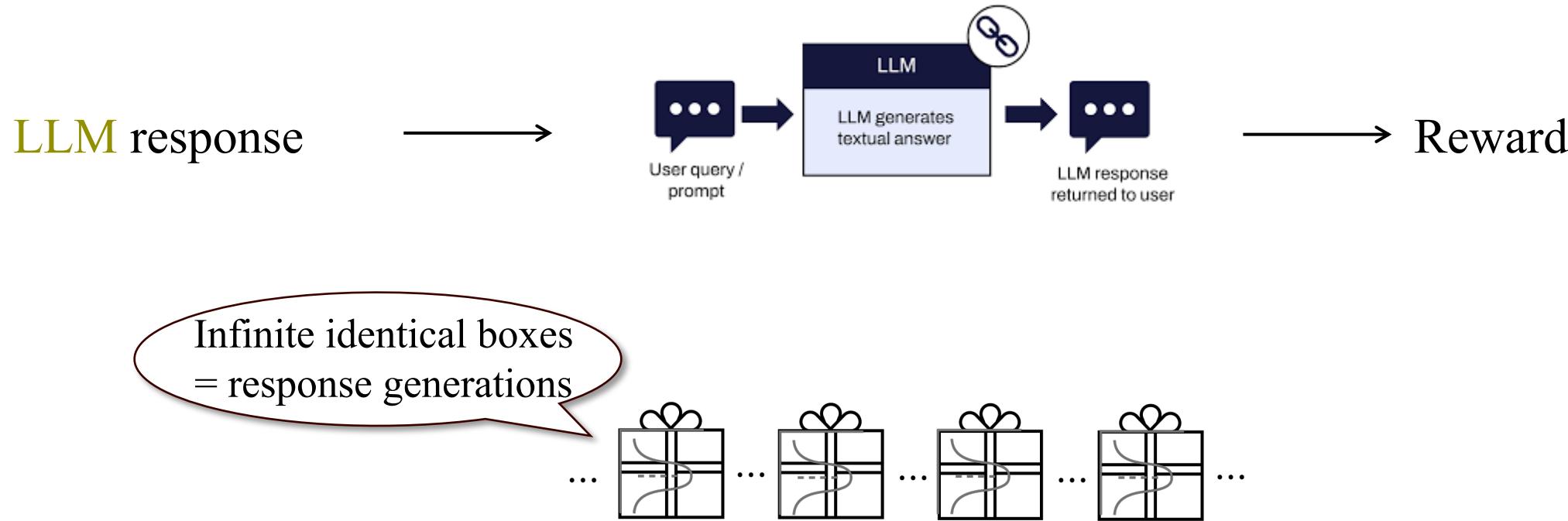
Adaptive Response Sampling in LLM Inference

LLM inference time alignment (optimization):



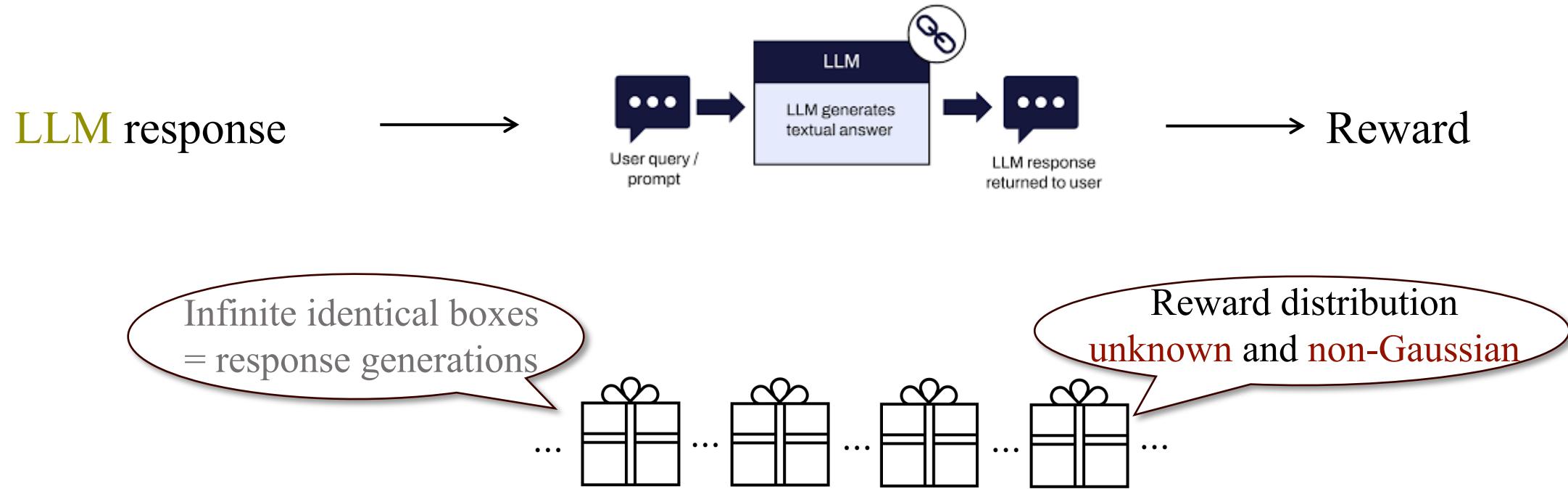
Adaptive Response Sampling in LLM Inference

LLM inference time alignment (optimization):



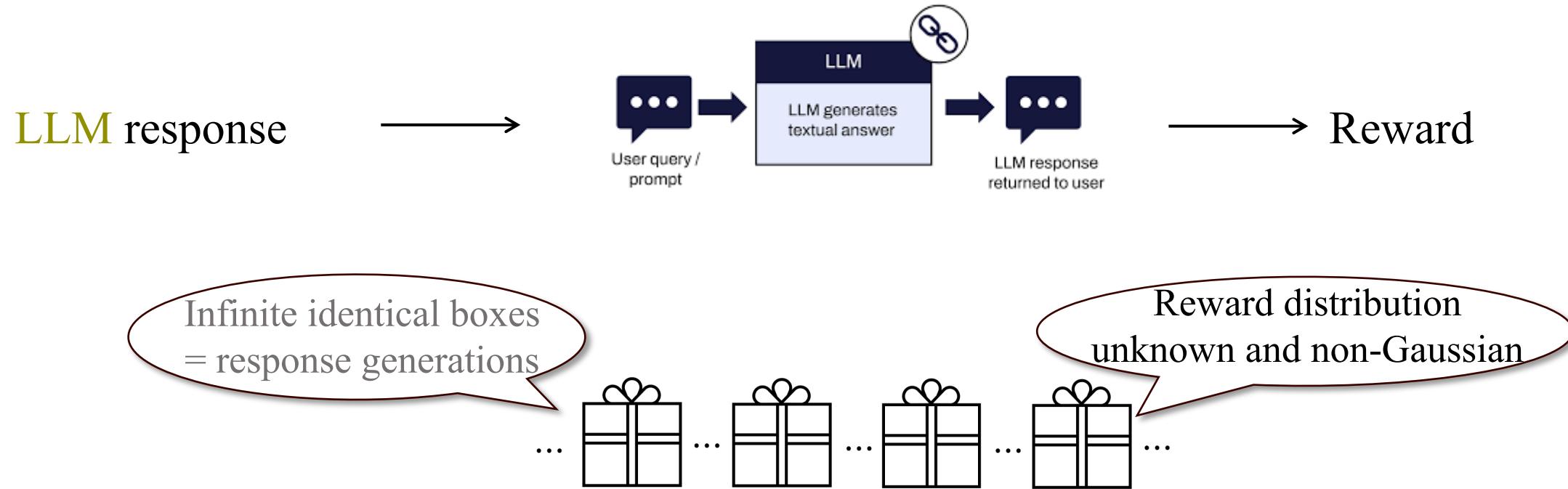
Adaptive stopping vs. fixed budget (best-of- N)
(Kalayci et al. 2025)

Adaptive Response Sampling in LLM Inference



Adaptive stopping vs. fixed budget (best-of- N)
(Kalayci et al. 2025)

Adaptive Response Sampling in LLM Inference



Adaptive stopping vs. fixed budget (best-of- N)
(Kalayci et al. '25)

Ours: **model-free stopping**
via **meta learning**

Best-prompt Identification in LLM Evaluation

LLM multi-prompt evaluation:

Prompt template
for each LLM

	Zero-shot	Few-shot	CoT	RAG	Revise
ChatGPT (GPT-4.1)	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★
Claude 3.5 Sonnet	★★★★★	★★★★★	★★★★★		★★★★★
Gemini 1.5 Pro	★★★★★	★★★	?	★★★★	★★★★★
deepseek	?	?	★★★★	?	★★★★
Llama 3.1-70B	?	?	★★★★	?	★★★
Mistral Large	?	?	★★★	?	★

Average performance
of (LLM, prompt) pairs

Best-prompt Identification in LLM Evaluation

LLM multi-prompt evaluation:

Prompt template
for each LLM

	Zero-shot	Few-shot	CoT	RAG	Revise
ChatGPT (GPT-4.1)	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★
Claude 3.5 Sonnet	★★★★★	★★★★★	★★★★★		★★★★★
Gemini 1.5 Pro	★★★★★	★★★	?	★★★	★★★★★
deepseek	?	?	★★★	?	★★★
Llama 3.1-70B	?	?	★★★	?	★★★
Mistral Large	?	?	★★★	?	★

Average performance
of (LLM, prompt) pairs

Prompt/ Question	Q1	Q2	Q3	...	Predicted avg performance
Prompt 1	1	\hat{p}_{12}	\hat{p}_{13}	...	$\widehat{\text{perf}}_1$
Prompt 2	\hat{p}_{21}	1	\hat{p}_{23}	...	$\widehat{\text{perf}}_2$
Prompt 3	1	\hat{p}_{32}	\hat{p}_{33}	...	$\widehat{\text{perf}}_3$
...

Matrix completion
(Polo et al. NeurIPS'24)

Best-prompt Identification in LLM Evaluation

LLM multi-prompt evaluation:

Prompt template
for each LLM

	Zero-shot	Few-shot	CoT	RAG	Revise
ChatGPT (GPT-4.1)	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★
Claude 3.5 Sonnet	★★★★★	★★★★★	★★★★★		★★★★★
Gemini 1.5 Pro	★★★★★	★★★	?	★★★	★★★★★
deepseek	?	?	★★★	?	★★★
Llama 3.1-70B	?	?	★★★	?	★★★
Mistral Large	?	?	★★★	?	★

Average performance
of (LLM, prompt) pairs

Prompt/ Question	Q1	Q2	Q3	...	Predicted avg performance
Prompt 1	1	\hat{p}_{12}	\hat{p}_{13}	...	$\widehat{\text{perf}}_1$
Prompt 2	\hat{p}_{21}	1	\hat{p}_{23}	...	$\widehat{\text{perf}}_2$
Prompt 3	1	\hat{p}_{32}	\hat{p}_{33}	...	$\widehat{\text{perf}}_3$
...

Matrix completion
(Polo et al. NeurIPS'24)

Best-prompt Identification in LLM Evaluation

Prompt template
for each LLM

	Zero-shot	Few-shot	CoT	RAG	Revise
ChatGPT (GPT-4.1)	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★
Claude 3.5 Sonnet	★★★★★	★★★★★	★★★★★		★★★★★
Gemini 1.5 Pro	★★★★★	★★★	?	★★★	★★★★★
deepseek	?	?	★★★	?	★★★
Llama 3.1-70B	?	?	★★★	?	★★★
Mistral Large	?	?	★★★	?	★

Average performance
of (LLM, prompt) pairs

Prompt/ Question	Q1	Q2	Q3	...	Predicted avg performance
Prompt 1	1	\hat{p}_{12}	\hat{p}_{13}	...	$\widehat{\text{perf}}_1$
Prompt 2	\hat{p}_{21}	1	\hat{p}_{23}	...	$\widehat{\text{perf}}_2$
Prompt 3	1	\hat{p}_{32}	\hat{p}_{33}	...	$\widehat{\text{perf}}_3$
...

How about tensors?

Matrix completion
(Polo et al. NeurIPS'24)

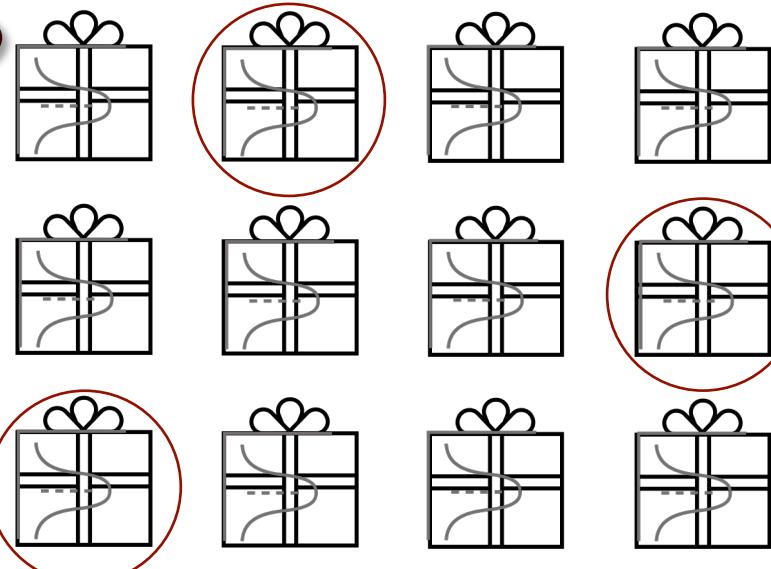
Best-prompt Identification in LLM Evaluation

Prompt template
for each LLM

	Zero-shot	Few-shot	CoT	RAG	Revise
ChatGPT (GPT-4.1)	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★
Claude 3.5 Sonnet	★★★★★	★★★★★	★★★★★		★★★★★
Gemini 1.5 Pro	★★★★★	★★★	?	★★★	★★★★★
deepseek	?	?	★★★	?	★★★
Llama 3.1-70B	?	?	★★★	?	★★★
Mistral Large	?	?	★★★	?	★

Average performance
of (LLM, prompt) pairs

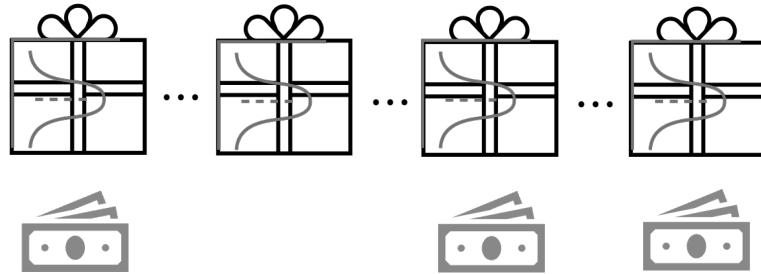
Boxes = entries



Applicable to tensors

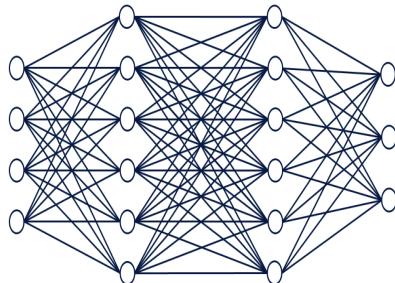
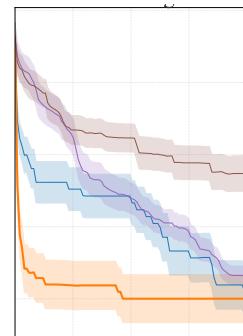
Ours: BayesOpt + Gittins
(supports multi-selection)

Novel connection



Link to **Pandora's Box** problem
& **Gittins index** theory

Competitive empirical performance



Interests from practitioners (e.g., Meta)

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Principled decision rules

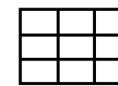
Varying evaluation costs

Adaptive stopping time

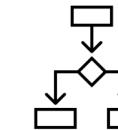
Unified framework for
selection and stopping

Future potential

Adaptive response sampling



Best-prompt identification



Chain-of-thought selection

Application to **efficient LLM**

"Cost-aware Stopping for Bayesian Optimization." Under review.

Find my papers on arXiv!

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

"Cost-aware Stopping for Bayesian Optimization." Under review.