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Research Overview: Decision-making under Uncertainty

•Earlier: stochastic control (actions chosen to regulate system)
•Unknown system rates (robust/model-free control) [IEEE TCNS]
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Research Overview: Decision-making under Uncertainty

•Earlier: stochastic control (actions chosen to regulate system)
•Unknown system rates (robust/model-free control) [IEEE TCNS]
•Random failure/attack realizations (optimal & robust control) [Automatica]
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“Cost-aware Defense for Parallel Server Systems 
against Reliability and Security Failures.” Automatica.
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Research Overview: Decision-making under Uncertainty

•Earlier: stochastic control (actions chosen to regulate system)
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•Random failure/attack realizations (optimal & robust control) [Automatica]
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“Smooth Nonstationary Bandits.” ICML’23

unknown reward 
function

random reward 
observations



•Recent: learning-based decision-making (actions chosen to reduce 
uncertainty due to limited feedback)
•Unknown reward function; random observations (bandits) [ICML’23 + OR]
•Unknown objective functions (black-box optimization) with
 varying evaluation costs [NeurIPS’24 + INFORMS DM Paper Finalist] 
 adaptive stopping time [Under review + AutoML’25 (non-archival)]
 multi-stage feedback [To be submitted]
 multi-source environment information [NeurIPS’25 LAW]

Research Overview: Decision-making under Uncertainty
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"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

“LLM-Driven Composite NAS for Multi-
Source RL State Encoding.” NeurIPS’25 LAW.

"Bayesian-optimal Decision-making under Cost-
aware Multi-stage Feedback via the Gittins Index.”
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"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

“LLM-Driven Composite NAS for Multi-
Source RL State Encoding.” NeurIPS’25 LAW.

"Bayesian-optimal Decision-making under Cost-
aware Multi-stage Feedback via the Gittins Index.”

This talk’s focus



Motivation: World of Optimization under Uncertainty
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Training hyperparameters
(e.g., learning rate, # layers)

Accuracy

ML model training:

Training

≠ parameters 
(weights, biases)
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Accuracy

ML model training:

Reward

Control design:
Control variables
(e.g., position, angle, velocity)

Training

Simulation

Training hyperparameters
(e.g., learning rate, # layers)

≠ parameters 
(weights, biases)
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Design choices 𝑥 Performance metric 𝑓(𝑥)

Accuracy

ML model training:

RewardControl variables
(e.g., position, angle, velocity)

Training

Simulation

Training hyperparameters
(e.g., learning rate, # layers)

non-analytical & 
no gradient info

Control design:

≠ parameters 
(weights, biases)
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Accuracy

ML model training:

Training

non-analytical & 
no gradient info

Training hyperparameters
(e.g., learning rate, # layers)

Input 𝑥 Observed outcome 𝑓(𝑥)

Black-box optimization:
(gradient-based methods not applicable)

≠ parameters 
(weights, biases)



Background: Black-Box Optimization
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Input 𝑥 Observed outcome 𝑓(𝑥)

Accuracy

ML model training:

Training

Training time

Compute credits

expensive-to-evaluate

Training hyperparameters
(e.g., learning rate, # layers)

Black-box optimization:
(gradient-based methods not applicable)



Training hyperparameter Range Number of Options
Batch size [16, 512] 10
Learning rate [1e-4, 1e-1] 10
Momentum [0.1, 0.99] 10
Weight decay [1e-5, 1e-1] 10
Number of layers {1, 2, 3, 4} 4
Max units per layer [64, 1024] 10
Dropout [0.0, 1.0] 10

Naïve (Non-Adaptive) Approach: Grid Search
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40,000,000 
combinations!

Accuracy

ML model training:

Training hyperparameters

expensive-to-evaluate



Data-Driven (Adaptive) Approach
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Hyperparameters
(e.g., learning rates)

Performance metric
(e.g., accuracy)

Data-efficient decision rule
(What to try next, when to stop)

Provide feedbackRun next evaluation

Training Pipeline

Automated machine learning:
(AutoML)



Existing Umbrellas of Black-Box Optimization
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Naïve (non-adaptive) approaches: Data-driven (adaptive) approaches:
•Grid search •Local search (e.g., simulated annealing)
•Random search •Evolutionary algorithms (e.g., genetic algo)
•Manual tuning •Bayesian optimization (e.g., EI, UCB, TS)

•Reinforcement learning (e.g., PPO, ENAS)
•LLM-based search agent (e.g., GENIUS)



Limitations in practice:
1. Limited principled guidance (e.g., naïve)
2. Often data-inefficient (e.g., naïve, local search, evolutionary algo) 
3. No or ad-hoc incorporation of additional side info (most)

Existing Umbrellas of Black-Box Optimization
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Naïve (non-adaptive) approaches: Data-driven (adaptive) approaches:
•Grid search •Local search (e.g., simulated annealing)
•Random search •Evolutionary algorithms (e.g., genetic algo)
•Manual tuning •Bayesian optimization (e.g., EI, UCB, TS)

•Reinforcement learning (e.g., PPO, ENAS)
•LLM-based search agent (e.g., GENIUS)

(e.g., varying training 
time across search space)



Naïve (non-adaptive) approaches:     Data-driven (adaptive) approaches:
•Grid search •Local search
•Random search •Evolutionary algorithms
•Manual tuning •Bayesian optimization

•Reinforcement learning
•LLM-based search agent

Overview of Contributions Across My Work
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Contributions of methods in my work:
1. Principled guidance
2. Competitive empirical performance
3. Principled incorporation of additional side info

New methods under this umbrella

Part I

Part II



Outline
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Part I (Recent): 
Bayesian Optimization via Gittins Index Design Principle

Part II (Ongoing): 
Black-box Optimization Beyond AutoML
Reinforcement Learning · Engineering Design · Scientific Discovery · LLM
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Part I (Recent): 
Bayesian Optimization via Gittins Index 
Design Principle

⋯ ⋯ ⋯



Bayesian Optimization
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𝑥 𝑓(𝑥)

Black-box function

𝑓~Stochastic	Process



Bayesian Optimization
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𝑥 𝑓(𝑥)

Black-box function

Probabilistic model
(e.g., Gaussian process)

Model belief

𝑓~Stochastic	ProcessTime 0



Bayesian Optimization
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𝑥%, … , 𝑥& 𝑓 𝑥% , … , 𝑓(𝑥&)

Black-box function

Probabilistic model
(e.g., Gaussian process)

Model belief

𝑓~Stochastic	ProcessTime 𝑡



Bayesian Optimization
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Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)

Time 𝑡 𝑓~Stochastic	Process

𝑥%, … , 𝑥& 𝑓 𝑥% , … , 𝑓(𝑥&)



Bayesian Optimization
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Black-box function

Probabilistic model
(e.g., Gaussian process)

Decision rule
(e.g., EI, UCB, TS)

Update belief
(Bayes’ rule)

𝑥%, … , 𝑥& 𝑓 𝑥% , … , 𝑓(𝑥&)

Time 𝑡

scoring (worth 
of each point
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Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)

Decide next input
(gradient-based 
optimization)

𝑥%, … , 𝑥& 𝑓 𝑥% , … , 𝑓(𝑥&)

Time 𝑡

Decision rule
(e.g., EI, UCB, TS)

scoring (worth 
of each point
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Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)

𝑥%, … , 𝑥&'% 𝑓 𝑥% , … , 𝑓(𝑥&'%)

Time 𝑡 + 1

Decision rule
(e.g., EI, UCB, TS)

Decide next input
(gradient-based 
optimization)

scoring (worth 
of each point



Bayesian Optimization
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Black-box function

Probabilistic model
(e.g., Gaussian process)

Update belief
(Bayes’ rule)

My focus
Decision rule

(e.g., EI, UCB, TS)

Decide next input
(gradient-based 
optimization)

𝑥%, … , 𝑥&'% 𝑓 𝑥% , … , 𝑓(𝑥&'%)

Time 𝑡 + 1

scoring (worth 
of each point



Challenges in Decision Rule Design
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Continuous search space

Correlated values

Correlation & continuity ⟹ Intractable MDP ⟹ Optimal policy unknown



Popular Decision Rule: Expected Improvement
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EI 𝑥 = 𝔼 max 𝑓 𝑥 − 𝑦()*+, 0 	 𝑥%, … , 𝑥&]

current best observed data 𝐷

“improvement”

𝑥&'% = max, 	EI-|/(𝑥)

One-step approximation to MDP

posterior distribution

Expected improvement EI(𝑥)

𝑦()*+



Popular Decision Rule: Expected Improvement
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Expected improvement EI(𝑥)

Improvement-based 
design principle

EI 𝑥 = 𝔼 max 𝑓 𝑥 − 𝑦()*+, 0 	 𝑥%, … , 𝑥&]

current best observed

“improvement”

𝑥&'% = max, 	EI-|/(𝑥; 𝑦()*+)

One-step approximation to MDP

posterior distribution

data 𝐷



Existing Design Principles
• Improvement-based (e.g., EI)
•Entropy-based
•Confidence bounds (UCB/LCB)
•Thompson sampling (TS)
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Expected improvement EI(𝑥)

Improvement-based 
design principle



New Design Principle: Gittins Index
• Improvement-based (e.g., EI)
•Entropy-based
•Confidence bounds (UCB/LCB)
•Thompson sampling (TS)
•Gittins Index
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Gittins index GI(𝑥)



New Design Principle: Gittins Index
• Improvement-based (e.g., EI)
•Entropy-based
•Confidence bounds (UCB/LCB)
•Thompson sampling (TS)
•Gittins Index
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Why another principle?
Gittins index GI(𝑥)



Our Contribution: Gittins Index Principle
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1. Principled easy-to-compute decision rules

2. Natural incorporation of side info and flexibility

3. Competitive performance on benchmarks

4. Theoretical guarantees

Joint work with Ziv Scully and Alexander Terenin et al.
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1. Principled easy-to-compute decision rules

2. Natural incorporation of side info and flexibility

3. Competitive performance on benchmarks

4. Theoretical guarantees

Joint work with Ziv Scully and Alexander Terenin et al.

EIGI (Ours)



Our Contribution: Gittins Index Principle
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Joint work with Ziv Scully and Alexander Terenin et al.

1. Principled easy-to-compute decision rules

2. Natural incorporation of side info and flexibility

3. Competitive performance on benchmarks

4. Theoretical guarantees

EIGI (Ours)
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Bayesian Optimization

𝑓(𝑥)
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Continuous search space

Correlated function values
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Bayesian Optimization

𝑓(𝑥)

12/30/25 Qian Xie (Cornell)

Continuous search space Discrete

Correlated function values Independent

⟹

⟹
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]

12/30/25 Qian Xie (Cornell)

Continuous search space Discrete

Correlated function values Independent

distribution of 
hidden reward
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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Continuous search space Discrete

Correlated function values Independent

distribution of 
hidden reward

𝑐(𝑥)
costs to open
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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Continuous search space Discrete

Correlated function values Independent

reward revealed 
when open

costs to open

selected



Continuous search space Discrete

Correlated function values Independent

Optimal policy: Gittins index
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]

12/30/25 Qian Xie (Cornell)

distribution of 
hidden reward

costs to open



Continuous search space Discrete

Correlated function values Independent

Optimal policy: Gittins index

42

Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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⟸
How to translate?

costs to open



⟸

Continuous search space Discrete

Correlated function values Independent

Our policy: GI-|/(𝑥; 𝑐) Optimal policy: GI-(𝑥; 𝑐)
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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incorporate posterior

take continuum limit

costs to open

New!



⟸

Continuous Discrete

Correlated Independent

Our policy: GI-|/(𝑥; 𝑐(𝑥)) Optimal policy: GI-(𝑥; 𝑐(𝑥))
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]
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incorporate posterior

take continuum limitHow to compute?

costs to open
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Gittins Index
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GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. 
𝔼 max 𝑓 𝑥 , 𝑔 	 𝐷] − 𝑐 𝑥 = 𝑔

vs.

𝑐(𝑥)

𝑓(𝑥) 𝑔

Exploration Exploitation

Open closed box Take opened box
𝔼 max 𝑓 𝑥 , 𝑔 − 𝑐(𝑥) 𝑔

Should one open box? Depend on 𝑔!

Intuition
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Gittins Index
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vs.

𝑐(𝑥)

𝑓(𝑥) 𝑔

Exploration Exploitation

Open closed box Take opened box
𝔼 max 𝑓 𝑥 , 𝑔 − 𝑐(𝑥) 𝑔

Should one open box? Depend on 𝑔!

Intuition

GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. 
𝔼 max 𝑓 𝑥 , 𝑔 	 𝐷] − 𝑐 𝑥 = 𝑔

⟺ 𝔼 max 𝑓 𝑥 − 𝑔, 𝑔 − 𝑔 	 𝐷] − 𝑐 𝑥 = 0
⟺ 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷] = 𝑐 𝑥

EI!|# 𝑥; 𝑔
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Gittins IndexExpected Improvement

12/30/25 Qian Xie (Cornell)

EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷] GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]

Exploration Exploitation

𝑐(𝑥)

𝑓(𝑥)
𝑔

vs.
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Gittins IndexExpected Improvement
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Temporal simplification to MDP
(One-step)

Spatial simplification to MDP

EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷] GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]



Spatial simplification to MDPTemporal simplification to MDP
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Gittins IndexExpected Improvement
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EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷] GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]

bisection search

analytical expression

Both are principled and easy-to-compute! 
"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.
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Gittins IndexExpected Improvement
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GI!|# 𝑥; 𝑐 := solution 𝑔 s.t. EI!|# 𝑥; 𝑔 = 𝑐(𝑥)
where EI!|# 𝑥; 𝑔 := 𝔼 max 𝑓 𝑥 − 𝑔, 0 	 𝐷]

EI!|# 𝑥 := 𝔼 max 𝑓 𝑥 − 𝑦$%&', 0 	 𝐷]

hard to discover GI

bisection search



Our Contribution: Gittins Index Principle
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Joint work with Ziv Scully and Alexander Terenin et al.

1. Principled easy-to-compute decision rules

2. Natural incorporation of side info and flexibility

3. Competitive performance on benchmarks

4. Theoretical guarantees

EIGI (Ours)
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Under-explored Side Info and Practical Flexibility

12/30/25 Qian Xie (Cornell)

Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
  



Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
  

Varying evaluation costs   
  

 Smart stopping time
  

 
  

[Locatelli’97,
Nguyen et al.’17,
Ishibashi et al.’23]
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How does existing principle incorporate them?

12/30/25 Qian Xie (Cornell)

Expected improvement EI(𝑥)

?

𝜏: 	EI 𝑥0 ≤ 𝜃

Arbitrarily bad

EIPC 𝑥; 𝑐 = EI 𝑥 /𝑐(𝑥)
[Snoek et al.’12]

[Astudillo et al.’21]

Which threshold?



Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
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Under-explored Side Info and Practical Flexibility

12/30/25 Qian Xie (Cornell)

New design principle: 
Gittins index



Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
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Why Gittins index?

12/30/25 Qian Xie (Cornell)

Optimal in related sequential 
decision problems

New design principle: 
Gittins index



Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
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Why Gittins index?

12/30/25 Qian Xie (Cornell)

Features in Pandora’s box

Features in Pandora’s box

Optimal in related sequential 
decision problems

New design principle: 
Gittins index

⋯ ⋯ ⋯



Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
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Why Gittins index?

12/30/25 Qian Xie (Cornell)

Features in Pandora’s box

Features in Pandora’s box

Features in Markov chain selection

Optimal in related sequential 
decision problems

New design principle: 
Gittins index



Varying evaluation costs   
  

 Smart stopping time
  

 Observable multi-stage feedback
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Why Gittins index?

12/30/25 Qian Xie (Cornell)

Features in Pandora’s box

Features in Pandora’s box

Features in Markov chain selection

Optimal in related sequential 
decision problems

⋯ ⋯ ⋯

New design principle: 
Gittins index

This talk’s focus

"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.
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Bayesian Optimization

⋯ ⋯ ⋯

Pandora’s Box

𝑐(𝑥)

𝑓(𝑥)𝑓(𝑥)

[Weitzman’79]

12/30/25 Qian Xie (Cornell)

Continuous Discrete

Correlated Independent

Fixed-iteration Flexible-stopping

Cost-unaware Cost-aware

Our policy: GI-|/(𝑥; 𝑐) Optimal policy: GI-(𝑥; 𝑐)

costs to open



Varying evaluation costs   
  

 Smart stopping time
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Expected Improvement vs Gittins Index

12/30/25 Qian Xie (Cornell)

GI 𝑥; 𝑐 : = solution 𝑔 s.t. EI 𝑥; 𝑔 = 𝑐(𝑥)

𝜏: 	GI 𝑥0; 𝑐 ≤ 𝑦()*+
⟺ 𝜏:EIPC 𝑥0; 𝑐 ≤ 1

naturally incorporates costs

derived shared stopping rule

EIPC 𝑥; 𝑐 = EI 𝑥 /𝑐(𝑥)

𝜏: 	EI 𝑥0 ≤ 𝜃

Arbitrarily bad

"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

Which threshold?



Our Contribution: Gittins Index Principle
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Joint work with Ziv Scully and Alexander Terenin et al.

1. Principled easy-to-compute decision rules

2. Natural incorporation of side info and flexibility

3. Competitive performance on benchmarks

4. Theoretical guarantees

EIGI (Ours)
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Gittins Index vs Baselines on AutoML Benchmark

12/30/25 Qian Xie (Cornell)

Ours

Not a real baseline

Lower the betterOurs

Selection rules Stopping rules

gap to the optimum

Lower the better



Our Contribution: Gittins Index Principle
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Joint work with Ziv Scully and Alexander Terenin et al.

1. Principled easy-to compute decision rules

2. Natural incorporation of side info and flexibility

3. Competitive performance on benchmarks

4. Theoretical guarantees

EIGI (Ours)
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Theoretical Guarantee and Empirical Validation

12/30/25 Qian Xie (Cornell)

𝔼 𝑅 ours; PBGI ≤ 𝑅 stopping	immediately

Implication: 
• Matches the best achievable performance in 
the worst case (evaluations are all very costly). 

• Avoids over-spending — a property many 
cost-unaware stopping rules lack.

Proof idea: For all 𝑡 < 𝜏, EI 𝑥&'! ≥ 𝑐(𝑥&'!).

Theorem (Safeguard Guarantee)

or LogEIPC cost-adjusted regret

Stopping-immediately

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

belowbelow

stopping time

New



"Cost-aware Bayesian Optimization via the 
Pandora's Box Gittins Index.” NeurIPS’24.
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Principled decision rules

Competitive empirical performance

Link to Pandora’s Box problem 
& Gittins index theory

Interests from practitioners (e.g., Meta)

⋯ ⋯ ⋯

12/30/25 Qian Xie (Cornell)

"Cost-aware Stopping for Bayesian 
Optimization.” Under review.

Natural incorporation of side info

Varying evaluation costs

Adaptive stopping time

Multi-stage feedback

Theoretical guarantees

𝔼 𝑅 ours; PBGI ≤ 𝑅 stopping	immediately

Ongoing: regret bound
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Part II (Ongoing): 
Black-box Optimization Beyond AutoML
Reinforcement Learning · Engineering Design · 
Scientific Discovery · Emerging AI Systems (LLM)


