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Research Overview: Decision-making under Uncertainty

e Earlier: stochastic control (actions chosen to regulate system)
* Unknown system rates (robust/model-free control) [I[EEE TCNS]
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“Stabilizing Queuing Networks with Model
Data-Independent Control.” IEEE TCNS.
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Research Overview: Decision-making under Uncertainty

e Earlier: stochastic control (actions chosen to regulate system)

* Random failure/attack realizations (optimal & robust control) [Automatical
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“Cost-aware Defense for Parallel Server Systems
against Reliability and Security Failures.” Automatica.
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Research Overview: Decision-making under Uncertainty

*Recent: learning-based decision-making (actions chosen to reduce
uncertainty due to limited feedback)
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Research Overview: Decision-making under Uncertainty

*Recent: learning-based decision-making (actions chosen to reduce
uncertainty due to limited feedback)

* Unknown reward function; random observations (bandits) [ICML’23 + OR (major
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“Smooth Nonstationary Bandits.” ICML’23
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Research Overview: Decision-making under Uncertainty

*Recent: learning-based decision-making (actions chosen to reduce
uncertainty due to limited feedback)

* Unknown objective functions (black-box optimization) with
. varying evaluation costs [NeurIPS’24 + INFORMS DM Paper Finalist]

adaptive stopping time [Under review + AutoML’25 (non-archival)]

& multi-stage feedback [To be submitted]
(i) multi-source environment information [Neur[PS'25 LAW]

—

|

Fo 4|

|:||:|[| "Cost-aware Bayesian Optimization via the
0 Pandora's Box Gittins Index.” NeurIPS’24.

% "Bayesian-optimal Decision-making under Cost- “LLM-Driven Composite NAS for Multi-
L' aware Multi-stage Feedback via the Gittins Index.” @ Source RL State Encoding.” NeurIPS’25 LAW.

I
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Research Overview: Decision-making under Uncertainty

*Recent: learning-based decision-making (actions chosen to reduce
uncertainty due to limited feedback)

* Unknown objective functions (black-box optimization) with

. varying evaluation costs [NeurIPS’24 + INFORMS DM Paper Finalist]
adaptive stopping time [Under review + AutoML’25 (non-archival)]
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Motivation: World of Optimization under Uncertainty

# parameters
A\\

ML model training: \.(weights, biaSGS) /

Training hyperparameters
(e.g., learning rate, # layers)

\

> Accuracy

\v//A.
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Motivation: World of Optimization under Uncertainty

# parameters
7

(weights, biases) /A
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ML model training:

A 4
\

Training hyperparameters
(e.g., learning rate, # layers)

> Accuracy

Control design:

Reward

A 4

Control variables
(e.g., position, angle, velocity)
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Motivation: World of Optimization under Uncertainty

non-analytical &
no gradient info

Design choices x > Performance metric f(x)

# parameters
(weights, biases) /A\\\VA

ML model training: 7o\ .
o A:::'.;Q“

ini X T o S0
Training hyperparameters > ﬂzskec:,;;‘,g; :,;,;. > Accuracy
: 0«\ lk‘g\ /I’.
(e.g., learning rate, # layers) NN LR /
| | N A/

Control design:

A 4

Control variables Reward

(e.g., position, angle, velocity)
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Motivation: World of Optimization under Uncertainty

Black-box optimization:

non-analytical &
no gradient info

> Observed outcome f(x)

(weights, biases) /7 \x=

O
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Training hyperparameters
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Background: Black-Box Optimization
Black-box optimization: expensive-to-evaluate
(gradient-based methods not applicable) ‘ g >

Input x = > Observed outcome f(x)
Training time
N C t dit
ML model training: v ompute credits

Training hyperparameters
(e.g., learning rate, # layers)
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Naive (Non-Adaptive) Approach: Grid Search

ML model training:

V/

A\A L. 4\‘\ I'I

.wcvr XK 04@'&
57

ov{ »‘;; Xpenswe -to- @

Training hyperparameters > i‘}}‘é‘{%o é,}%»:& ’l > Accuracy
BN 2 /
\y/// ,/
Training hyperparameter | Range Number of Options
Batch size 16, 512] 10 |
Learning rate [1e-4, le-1] ilO i
Momentum 0.1, 0.99] 101 Ceombinations!
Weight decay [1e-5, le-1] ilO i
Number of layers {1, 2, 3,4} i4 i
Max units per layer [64, 1024] ilO i
Dropout [0.0, 1.0] 110 |
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Data-Driven (Adaptive) Approach

Automated machine learning:

(AutoML)

A 4

o0—
—O~

Hyperparameters
(e.g., learning rates)

Run next evaluation

v
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YZA,

Performance metric
(e.g., accuracy)

Provide feedback

Data-efficient decision rule
(What to try next, when to stop)
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Existing Umbrellas of Black-Box Optimization

Naive (non-adaptive) approaches:  Data-driven (adaptive) approaches:

* Grid search * Local search (e.g., simulated annealing)
* Random search * Evolutionary algorithms (e.g., genetic algo)
* Manual tuning * Bayesian optimization (e.g., EI, UCB, TS)

* Reinforcement learning (e.g., PPO, ENAS)
* LLM-based search agent (c.g., GENIUS)

12/30/25
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Existing Umbrellas of Black-Box Optimization

Naive (non-adaptive) approaches:  Data-driven (adaptive) approaches:

* Grid search * Local search
* Random search * Evolutionary algorithms
* Manual tuning * Bayesian optimization

* Reinforcement learning
* LLM-based search agent

Limitations in practice:
1. Limited principled guidance (e.g., naive)
2. Often data-inefficient (e.g., naive, local search, evolutionary algo)

3. No or ad-hoc incorporation of additional side info (most)
(e.g., varying training

time across search space)
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Overview of Contributions Across My Work

Naive (non-adaptive) approaches: Data-driven (adaptive) approaches:

* Bayesian optimization

* Reinforcement learning

* LLM-based search agent
Contributions of methods in my work:
1. Principled guidance

2. Competitive empirical performance
3. Principled incorporation of additional side info

New methods under this umbrella

Qian Xie (Cornell) 16




Outline

Part I (Recent):
Bayesian Optimization via Design Principle

Part 11 (Ongoing):
Black-box Optimization Beyond AutoML
Reinforcement Learning - Engineering Design - Scientific Discovery + LLM

12/30/25
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Part 1 (Recent):
Bayesian Optimization via
Design Principle

0.0 0.2 0.4 0.6 0.8 1.0
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Bayesian Optimization

f ~Stochastic Process
X > ..’

> f(x)
Black-box function
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Bayesian Optimization

Time 0

f ~Stochastic Process

12/30/25

. F@)

Model belief

Black-box function

—11 Objective Function
—— Mean
Confidence

Probabilistic model
(e.g., Gaussian process)
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Bayesian Optimization

Time t

f ~Stochastic Process

12/30/25

> flxn), e, ()

Model belief

Black-box function

—11 Objective Function
—— Mean
Confidence

Probabilistic model
(e.g., Gaussian process)
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Bayesian Optimization

‘ f ~Stochastic Process

> f(x1), o, f(Xe)

Update belief
(Bayes’ rule)

Time t

Black-box function

2

0 Objective Function

*  Observed Data

Prediction
—2 Confidence

0.0 0.2 0.4 0.6 0.8 1.0

Probabilistic model
(e.g., Gaussian process)

12/30/25

Qian Xie (Cornell)




Bayesian Optimization

Time t ‘
X1, o) Xg > ..

> f(xl)l :f(xt)

Update belief
(Bayes’ rule)

Black-box function

0 Objective Function
0.5 *  Observed Data
Prediction

0.0
0.0 0.2 04 0.6 0.8 1.0 —2 Confidence

Decision rule
(e.g., EI, UCB, TS)

12/30/25

0.0 0.2 0.4 0.6 0.8 1.0

Probabilistic model
(e.g., Gaussian process)

scoring (worth
of each point
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Bayesian Optimization

Time t ‘
X1, xt > .‘

> f(xl)l :f(xt)

Update belief
(Bayes’ rule)

EEnN ’

Decide next iput
(gradient-based

optimization) Black-box function

0 Objective Function
0.5 *  Observed Data
Prediction

0.0
0.0 0.2 04 0.6 0.8 1.0 —2 Confidence

Decision rule
(e.g., EI, UCB, TS)
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0.0 0.2 0.4 0.6 0.8 1.0

Probabilistic model
(e.g., Gaussian process)

scoring (worth
of each point
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Timet + 1

.

Bayesian Optimization

Decide next iput
(gradient-based
optimization)

0.5

0.0

12/30/25

AV

0.0 0.2 0.4 0.6 0.8 1.0

Decision rule
(e.g., EI, UCB, TS)

Black-box function

G

> ), s [ (K1)

scoring (worth
of each point
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Update belief
(Bayes’ rule)

0 Objective Function

*  Observed Data

Prediction
—2 Confidence

0.0 0.2 0.4 0.6 0.8 1.0

Probabilistic model
(e.g., Gaussian process)
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Bayesian Optimization

@O'O 00 02 04 06 08 10
Decision rule scoring (wqrth
(e.g., EI, UCB, TS) Qi each point
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Challenges 1n Decision Rule Design

4_

Correlated values

Objective Function
*  Observed Data
—— Prediction
Confidence

0.0
|

0.2 0.4 0.6 0.8 1.0

|
, |
Continuous search space

Correlation & continuity = Intractable MDP = Optimal policy unknown
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Popular Decision Rule: Expected Improvement

current best observed @
El(x) = max(f(x) Ypest: 0) | X1, \/\\
0.0

|
“Iimprovement”

—2.51

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

= max, EIf|D(x) 05 \—/\/

One-step approximation to MDP Expected improvement EI(x)
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Popular Decision Rule: Expected Improvement

12/30/25

v

A

Qian Xie (Cornell)

2.5

P Wa -

—2.51

0.0 0.2 0.4 0.6 0.8 1.0

0.5 \—/\/
0.0

0.0 0.2 0.4 0.6 0.8 1.0

Expected improvement EI(x)
Improvement-based
design principle
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Existing Design Principles

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)

12/30/25
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" YaUa

—2.51

0.0 0.2 0.4 0.6 0.8 1.0

IS

0.0 0.2 0.4 0.6 0.8 1.0

Expected improvement EI(x)
Improvement-based
design principle
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New Design Principle:

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)

12/30/25
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2.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0
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New Design Principle:

* Improvement-based (e.g., EI)
* Entropy-based

* Confidence bounds (UCB/LCB)
* Thompson sampling (TS)

2.5

0.0 0.2 0.4 0.6 0.8 1.0
W —@
0.0 0.2 0.4 0.6 0.8 1.0

? Why another principle?

12/30/25
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Our Contribution: Principle

Joint work with Ziv Scully and Alexander Terenin et al.

1. Principled easy-to-compute decision rules
2. Natural incorporation of side info and flexibility
3. Competitive performance on benchmarks

4. Theoretical guarantees

12/30/25
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Our Contribution: Principle

Joint work with Ziv Scully and Alexander Terenin et al.

El
1. Principled easy-to-compute decision rules v

2. Natural incorporation of side info and flexibility X
3. Competitive performance on benchmarks X

4. Theoretical guarantees X
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Our Contribution: Principle

Joint work with Ziv Scully and Alexander Terenin et al.

El
1. Principled easy-to-compute decision rules v
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Bayesian Optimization

f(x) \_/\‘¥

0.0 0.2 0.4 0.6 0.8 1.0

Continuous search space

Correlated function values
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Bayesian Optimization

f(x) W

0.0 0.2 0.4 0.6 0.8 1.0

Continuous search space =

Correlated function values =

12/30/25
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Bayesian Optimization Pandora’s Box

" ;

4 [Wettzman™/9] e ution of
hidden reward

2 cN cN cN

\ \ o
flx) W g o e e B e B e - DA €D
Continuous search space Discrete
Correlated function values Independent
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Bayesian Optimization

f(x) \_/\‘¥

0.0 0.2 0.4 0.6 0.8 1.0

Continuous search space

Correlated function values

12/30/25

Pandora’s Box

[Weitzman™79] e onor
hidden reward
N N N 7

;__J _;_}J - ()

Qian Xie (Cornell)

- 1
. = o
(o] ] [ c(x)
|
Discrete
Independent
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Bayesian Optimization Pandora’s Box

f(x) 0 W
c(x)
00 02 04 06 08 10

Continuous search space Discrete

Correlated function values Independent
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Bayesian Optimization

Pandora’s Box
[Weitzman’79]

2 -
JONNY Vi == e - - P
o = e
> [e] [e] L[]
Continuous search space Discrete
Correlated function values Independent
Optimal policy:

12/30/25
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distribution of
hidden reward
L

f(x)
c(x)
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Bayesian Optimization Pandora’s Box
[Weitzman’79]

2 CO‘) cN cn a%s)
\
f(x)ow g o Kol i e o €9
o = e

5 ax ] [1 cx)

o.f) 02 04 06 08 10 .
Continuous search space Discrete
Correlated function values Independent

How to translate? . ‘
« Optimal policy:
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Bayesian Optimization Pandora’s Box
[Weitzman’79]

2 CO‘) cN cn a%s)
\
f(x)ow g o Kol i e o €9
o = e

5 ax ] [1 cx)

o.f) 02 04 06 08 10 .
Continuous search space Discrete
Correlated function values Independent

Incorporate posterior

Our policy: Glgp(x; c) «  Optimal policy: Gl¢(x; c)

take continuum limait

12/30/25
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Bayesian Optimization Pandora’s Box

N - [Weitzman’79]
1 C(h SO’) a%s) cH
f(x) R = = e = 2 R e 2 f(x)
) 2, _=, =,
[e] 1 [ c(x)

0.0 02 0.4 0.6 0.8 1.0
costs to open

Our policy: Glgp(x;c(x)) « Optimal policy: Glg(x; c(x))

How to compute?
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Intuition

Exploration
D
f(x) .‘?‘ vs. ?‘?‘
_A,
c(x)
Open closed box

E[max(f (x), g)] —c(x)

Should one open box? Depend on g!

12/30/25

2.5
0.0

—2.51

E
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>

W

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

£ip(x; ¢): = solution g s.t.

[max(f(x),g) | D] —c(x) =

45



2.5

00 W

—2.51

0.0 0.2 0.4 0.6 0.8 1.0

N/

0.0 0.2 0.4 0.6 0.8 1.0

£ip (x; €): = solution g s.t.
E[max(f(x),g) | D] — c(x) =
& E[max(f(x) —g,9 —9) | D] —c(x) =0
& E[max(f(x) — g,0) | D] = c(x)

l

EIf|D(x; )
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Qian Xie (Cornell)




Expected Improvement

2.5 751
0.0 \*/K 0.0 W
2.5 2.5 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.0 ‘ ‘ | | | (. ‘ | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Elfp(x): = E[max(f (x) — ¥pest, 0) | D] £ip(x; €)= solution ¢ s.t. El¢p(x; 1) = c(x)
where El¢p(x; 0): = E| max(f(x) — 7,0) | D]

@@ w &

c(x) =
Exploration Exploitation

12/30/25
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Expected Improvement

2.5 751
0.0 W 0.0 \f/\*\—
2.5 250 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.0 ‘ ‘ | | | 0L ‘ | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Elfp(x): = E[max(f (x) — ¥pest, 0) | D] £ip(x; €)= solution ¢ s.t. El¢p(x; 1) = c(x)
where El¢p(x; 0): = E[max(f(x) — 7,0) | D]

Temporal simplification to MDP simplification to MDP
(One-step)

12/30/25
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Expected Improvement

2.5 )5
0.0 W 0.0 \/\*\—
2.5l 250 | | | | |

0.0 02 04 06 08 10 00 02 04 06 08 10

0.5 \J \/ 5|
O‘O’o‘o 0.2 0.4 0.6 0.8 1.0 000 0.2 > | 0.8 1.0

Elfp(x): = E[max(f (x) — ¥pest, 0) | D] £ip(x; €): = solution ¢ s.t. El¢p(x; 1) = c(x)
where El¢p(x; 0): = E[max(f(x) — 7,0) | D]

analytical expression

Temporal simplification to MDP simplification to MDP
Both are principled and easy-to-compute!

|:| "Cost-aware Bayesian Optimization via the
I:I I:ID Pandora's Box Gittins Index.” NeurlPS’24.
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Expected Improvement

2.5] 5 |
Y
—2.51 —2.50L ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

@
0.0 ‘ ‘ ‘ ‘ ‘ 0L ‘ _ ‘ ‘ ‘
00 02 04 06 08 1.0 00 02 — 0.8 1.0

Elfp(x): = E[max(f (x) — ¥pest, 0) | D] £ip(x; ¢): = solution g s.t. El¢p(x; g) = c(x)
where El¢ p (x; g): = E[max(f(x) — g,0) | D]

Google DeepMind

FunBO: Discovering new acquisition functions for
Bayesian Optimization with FunSearch

Qian Xie (Cornell)
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Our Contribution: Principle

Joint work with Ziv Scully and Alexander Terenin et al.

El

2. Natural incorporation of side info and flexibility X
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Under-explored Side Info and Practical Flexibility

m Varying evaluation costs

0 0
il XL SN
NO7INSXRES 0D

K7 K KA
\J/ .
&/

. . 2\ oV,
%, Smart stopping time A
@230 NESAREISNETES

BN ISR H4
N s W
N | N /4
T Observable multi-stage feedback
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How does existing principle incorporate them?

m Varying evaluation costs 2.5

EIPC(x; c) = EI(x)/c(x) \f/\*\
[Snoek et al.”’12] 0.0
2
250

. [Astudillo etal"21] 00 02 04 06 08 1
% Smart stopping time 05
T: El(x,) < 8 0o \J\/
[Locatelli’97, Q 00 02 04 06 038 1.C
Neuyen et al.’ 17 Which threshold?

- Ishibashi et al.”23] Expected improvement EI(x)
T Observable multi-stage feedback
?
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m Varying evaluation costs

% Smart stopping time

T
793 Observable multi-stage feedback -

12/30/25
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Under-explored Side Info and Practical Flexibility

New design principle:
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Why

m Varying evaluation costs =

% Smart stopping time

T
793 Observable multi-stage feedback -

12/30/25
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems
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Why
m Varying evaluation costs

Features in Pandora’s box

% Smart stopping time

Features in Pandora’s box

T
793 Observable multi-stage feedback -

12/30/25
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems
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Why

m Varying evaluation costs

% Smart stopping time

T
793 Observable multi-stage feedback -

Features in Markov chain selection

Qian Xie (Cornell)

New design principle:
Gittins 1ndex

Optimal in related sequential

decision problems
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Why

m Varying evaluation costs

Features in Pandora’s box

% Smart stopping time

Features in Pandora’s box

UHU "Cost-aware Bayesian Optimization via the
0 Pandora's Box Gittins Index.” NeurIPS’24.

12/30/25
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New design principle:
Gittins 1ndex

Optimal in related sequential
decision problems
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"Cost-aware Stopping for Bayesian
b

Optimization.” Under review.



Bayesian Optimization Pandora’s Box
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Fixed-iteration Flexible-stopping
Cost-unaware Cost-aware
Our policy: Glgp(x; c) Optimal policy: Gl (x; c)
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Expected Improvement vs

m Varying evaluation costs
EIPC(x; c) = El(x)/c(x) (x; ¢): = solution g s.t. EI(x; g) = c(x)

Arbitrarily bad @ incomo@

‘\»?g, Smart stopping time
T: El(x;) <6 T: GI(X; €) < Ypest

Which threshold?Y < T EIPC(x;;c) <1
@al‘ed stopping rule

UHU "Cost-aware Bayesian Optimization via the o "Cost-aware Stopping for Bayesian
U Pandora's Box Gittins Index.” NeurIPS’24. ‘ Optimization.” Under review.
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Our Contribution: Principle

Joint work with Ziv Scully and Alexander Terenin et al.

El

3. Competitive performance on benchmarks X
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vs Baselines on AutoML Benchmark
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Selection rules Stopping rules
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Our Contribution: Principle
Joint work with Ziv Scully and Alexander Terenin et al.
El
4. Theoretical guarantees X




Theoretical Guarantee and Empirical Validation

Cost-Adjusted Regret

Theorem (Safeguard Guarantee) 20.0
E[R( ; )] < R[stopping immediately] 17.5
or LogEIPC) (cost-adjusted regret % 15.0
% 12.5
Implication: E 100
» Matches the best achievable performance in o
the worst case (evaluations are all very costly). ?0 7.5
o
» Avoids over-spending — a property many >0

cost-unaware stopping rules lack. 5 = o A

Stopping—imm@

A

Proof idea: For all t < 7, EI(x¢11) = ¢(X¢41). LogIPC PBGI LCB TS
ing tim
StOp p gt ¢ PBGI/LogEIPC SRGap-med GSS PRB Immediate
LogEIPC-med UCB-LCB Convergence A  Hindsight

e "Cost-aware Stopping for Bayesian
‘ Optimization.” Under review.
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Qian Xie (Cornell)
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Principled decision rules Natural incorporation of side info

C% ({h G G % Varying evaluation costs
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Link to Pandora’s Box problem g?l Multi-stage feedback
& theory -
Competitive empirical performance Theoretical guarantees
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Ongoing: regret bound

Interests from practitioners (e.g., Meta)

H "Cost-aware Bayesian Optimization via the o "Cost-aware Stopping for Bayesian
U Pandora's Box Gittins Index.” NeurIPS’24. ‘ Optimization.” Under review.
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Part 11 (Ongoing):

Black-box Optimization Beyond AutoML
- kngineering Design -

Scientific Discovery - Emerging Al Systems (LLM)
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