
LLM-Driven Composite Neural Architecture Search
for Multi-Source RL State Encoding

Yu Yu
Shanghai Jiao Tong University

Qian Xie∗
Cornell University

Li Jin
Shanghai Jiao Tong University

Abstract

Designing state encoders for reinforcement learning (RL) with multiple information
sources—such as sensor measurements and time-series signals—remains underex-
plored and often requires manual design. We formalize this challenge as a problem
of composite neural architecture search (NAS), where multiple source-specific
modules and a fusion module are jointly optimized. Existing NAS methods over-
look useful side information about each module’s representation quality, limiting
their sample efficiency in this multi-source RL setting. To address this, we propose
an LLM-driven NAS pipeline that leverages language-model priors over module
design choices and representation quality to guide sample-efficient search for high-
performing composite state encoders. On a mixed-autonomy traffic control task,
our approach discovers higher-performing architectures with fewer evaluations
than traditional NAS baselines and the LLM-based GENIUS framework.

1 Introduction

Reinforcement learning (RL) often requires transforming raw observations into compact state rep-
resentations. In many real-world domains, the state is observed through multiple heterogeneous
sources—such as sensors, time-series signals, images, or text—necessitating specialized encoders for
each source and a fusion module to combine them. Existing RL systems typically rely on manually
designed encoders, which can be suboptimal and hard to generalize across environments. While
neural architecture search (NAS) offers a way to automate encoder design, most NAS methods
target single-modality supervised tasks and overlook the composite, multi-source nature of RL state
encoding. Moreover, evaluating architectures in RL is notoriously costly, as each candidate must be
trained through thousands of simulator interactions, making sample efficiency a key challenge.

We formulate the underexplored problem of composite NAS for RL state encoding, where multiple
source-specific modules and a fusion module are jointly optimized. Beyond sample efficiency, a
further challenge is leveraging side information—such as the representation quality or specialization
of each module—signals that existing NAS methods typically ignore or cannot model effectively.

To address this limitation, we propose an LLM-driven NAS pipeline that leverages language-model
priors over module design choices and their representation quality to automatically discover high-
performing composite state encoder architectures for RL. Our main contributions are:

1. We introduce and formally define the problem of composite NAS for state encoding in RL
with multiple information sources.

2. We propose an LLM-driven NAS pipeline that incorporates language-model priors to guide
the search using side information about module representation quality.

3. We instantiate and evaluate the proposed framework on a mixed-autonomy traffic control
task, demonstrating improved search efficiency and RL performance.

∗Correspondence to: Qian Xie <QX66@CORNELL.EDU>.

NeurIPS 2025 Workshop on Bridging Language, Agent, and World Models for Reasoning and Planning.

2 Background and Related Works

2.1 RL state encoding

State encoding is a form of representation learning that maps raw observations (e.g., images, textual
descriptions, or sensor measurements) into compact latent representations that can be used by RL
agents as input for policy and value estimation. Typical architectures include convolutional neural
networks (CNNs) for image observations, Transformer or recurrent networks (e.g., LSTMs, GRUs)
for textual or time-series inputs, and feed-forward networks (FFNs) for structured inputs.

Various strategies have been explored for obtaining such representations. A widely adopted approach
is end-to-end training, where the encoder is jointly optimized with the RL policy using algorithms
such as Proximal Policy Optimization (PPO), optimizing rewards directly. Alternatively, some works
pretrain the encoder using self-supervised or contrastive learning objectives (e.g., representation
consistency across views) before fine-tuning in RL. In this work, we focus on the end-to-end setting,
where the encoder architecture is optimized jointly with the RL agent.

2.2 Neural architecture search

Neural architecture search (NAS) aims to automatically discover high-performing neural architectures.
For RL, NAS methods can be applied either in conjunction with end-to-end training—searching for
architectures that directly maximize task rewards—or in a two-stage manner where the architectures
are optimized for auxiliary objectives such as contrastive loss, and then transferred to RL. In this
work, we focus on the former, i.e., searching architectures trained end-to-end with the RL agent.

Traditional methods. A wide range of NAS algorithms have been developed, including gradient-
based DARTS [7], RL-based ENAS [9], and evolutionary-based PEPNAS [12], and Bayesian opti-
mization, including Gaussian process–based methods such as those implemented in BoTorch [1] with
mixed-type (ordinal and categorical) kernels, as well as BOHB [6] and BANANAS [11].

LLM-based methods. Recently, LLMs have been used to guide architecture search by generating
architecture descriptions or candidates to discover high-performing architectures. Representative
methods include GENIUS [14], LLMatic [8], LAPT-NAS [15], and SEKI [2]. However, they are
primarily designed for single-modality supervised learning tasks (e.g., image classification) and do
not consider composite modules or RL state encoding.

2.3 LLM for RL

Yan et al. [13] investigates the use of LLMs as action priors to guide policy learning in RL, but not
as neural architecture priors for RL state encoding. Recent surveys provide broader perspectives:
Schoepp et al. [10] categorizes three roles of LLMs in RL—Agent, Planner, and Reward—and further
discusses modifying LLM architectures to serve directly as state representations, while Cao et al.
[3] categorizes LLMs into four roles—information processor, reward designer, decision-maker, and
generator—with representation learning discussed under the generator role. In contrast, our work
explores a complementary approach: employing LLMs to guide neural architecture search for state
encoders, where the resulting architectures—not the LLM itself—form the state representation.

3 LACER: An LLM → State Encoder → RL Pipeline

Our approach, LLM-driven Neural Architecture Search for Composite State Encoders in RL (LACER)
iteratively uses an LLM to generate candidate state encoder architectures, evaluates each candidate in
an RL environment, and feeds the resulting performance back to the LLM.

3.1 Problem Setup

We consider an RL agent that interacts with an environment and receives observations composed
of multiple input sources, such as sensor values, time-series signals, textual instructions, or image
observations. Each input source may require a different type of neural architecture (e.g., MLP/FFN,
Transformer, CNN) to extract relevant features. Instead of searching for a single shared encoder, our

2

LLM State Encoder RL Training

Environment
performance

Initial

Architecture

searched new

architecture

state data

observation

action

encoded state

RL with State EncoderNAS with LLM Agent

Figure 1: LLM-agentic prompting → architecture generation → RL training & evaluation pipeline

goal is to automatically discover a set of architecture modules—one for each input source—and a
fusion module that combines their outputs into a final latent state representation.

Formally, let x = (x1, . . . , xM) denote the raw observations from M input sources, and define the
overall state encoder as s = gϕ

(
fθ1(x1), . . . , fθM (xM)

)
, where fθi is the architecture for source i

with design choices θi, and gϕ is a fusion module with design choices ϕ. Let E denote the downstream
RL environment. Our goal is to search over {θi}Mi=1 and ϕ to maximize

M (π ◦ gϕ ◦ (fθ1 , . . . , fθM); E) ,
where M(·; E) measures the task-level performance of the RL policy π in environment E (e.g.,
average traffic speed), which may differ from the reward used to train π.

3.2 LLM-Driven Neural Architecture Generation

We begin with an expert-designed initial architecture. At each subsequent iteration, we query an LLM
with a textual prompt that summarizes the current set of architecture modules and their associated
performance. The LLM then responds with one or a batch of new composite architecture candidates.
For each module (including the input-specific encoders and the fusion block), the search is restricted
to a module-specific architecture space typically used for that type of neural network (e.g., CNNs
for image inputs, transformers for time-series inputs, and FFNs for vector inputs). Figure 5 and
Table 1 in Appendix B provide an example of a composite architecture with transformers and FFNs,
along with the corresponding search space. We convert the LLM output into executable architectures
using simple tokenization and pattern matching (for implementation details, see Appendix B). For a
comparison between the design of our method and other LLM-based NAS methods, see Appendix A.

3.3 RL Training and Evaluation

Each generated composite architecture is trained end-to-end with the RL agent. We train a rein-
forcement learning algorithm (e.g., PPO) for a fixed number of interaction steps. To provide richer
feedback than existing methods (e.g., GENIUS), the LLM receives not only the task metric but also
the average reward and feature information (representation quality of each input-specific encoder;
see Appendix A). These three signals serve as performance feedback for the next iteration. The PPO
policy and value heads remain fixed; only the state encoder modules vary during the search. This
LLM–training–evaluation loop is repeated until the evaluation budget is exhausted. In the batch
setting, the RL agent is trained independently for each candidate, so the total training cost scales with
the number of candidates per batch. See Appendix B for more training and testing details.

4 Experiment: RL-Based Mixed-Autonomy Traffic Control

Benchmark. We evaluate our method on an RL-based mixed-autonomy traffic control task studied
in Cheng and Jin [4] in which both connected autonomous vehicles (CAVs) and human-driven vehicles
coexist in the same environment. The CAV penetration ratio is set to 0.9. At each environment
step, the observation contains three distinct input sources: (i) the temporal traffic evolution of key
metrics (e.g., speed, density, and flow rate), (ii) the current traffic state (lane-specific densities, speed
distributions, and CAV penetration ratio), and (iii) the distribution history of the vehicle sequence. A
schematic of this traffic control scenario is illustrated in Figure 2a. The presence of multiple sources
of inputs makes this benchmark suitable for evaluating composite state encoders.

3

(a) left

0 5 10 15 20 25 30 35 40 45 50
Candidate Number

5.12

5.14

5.16

5.18

5.20

5.22

5.24

5.26

5.28

5.30

Av
er

ag
e

Sp
ee

d

Performance Comparison (with Standard Errors)

Expert
DARTS
ENAS

PEPNAS
LACER-5

LACER-1
GENIUS

(b) right

Figure 2: Left: RL-based mixed-autonomy traffic control; Right: Comparison of performance (i.e.,
average traffic speed) between our two LACER variants and baselines.

Baselines. We consider three groups of baselines: (i) Expert-designed, i.e., encoder architectures
manually specified by a domain expert; (ii) Traditional NAS, including DARTS [7], ENAS [9],
and PEPNAS [12], each generates 5 candidates per iteration; (iii) LLM-based NAS, including GE-
NIUS [14], which uses GPT-4 to generate one candidate per iteration.

Evaluation metric. For each method, we track the average traffic speed achieved by the best
architecture evaluated so far, and plot this task metric over the number of evaluated candidates. This
allows us to assess the sample efficiency of the neural architecture search, i.e., how quickly each
method discovers architectures with higher performance.

Experiment setup. Following Cheng and Jin [4], we adopt four encoder modules: a traffic encoder,
a time encoder, a sequence encoder, and a fusion encoder. The traffic state is represented as a fixed-
dimensional vector and processed by an FFN. The remaining two inputs (temporal traffic evolution
and action sequence history) are treated as time-series, and we therefore search over transformer-
based architectures for their corresponding encoders. The fusion module is also implemented as an
FFN. The architecture search space for each module is designed following the taxonomy in the survey
of Chitty-Venkata et al. [5]. Detailed module-specific search spaces are reported in Appendix B.

Each candidate architecture is trained for 200k interaction steps using PPO and then evaluated for
50k steps to obtain performance metrics, including average traffic speed, average reward, and feature
information. We consider two variants of our method: LACER-1, which generates one candidate
per iteration, and LACER-5, which generates five candidates per iteration. For a fair comparison, all
methods are evaluated using 50 candidates in total—10 iterations for each batch method and 50 for
others. To assess variability, each experiment is repeated with 8 random seeds.

Experiment results. Figure 2b shows the average traffic speed as a function of the number of
evaluated architecture candidates. Both of our LACER variants significantly outperform the expert-
designed architecture, traditional NAS baselines, and the LLM-based GENIUS baseline. These
results demonstrate that combining LLM-based priors with composite state encoding and richer
performance signals leads to more sample-efficient architecture search in RL settings.

In Appendix C, we also report ablation studies to analyze the effect of different design choices in our
pipeline, including: (i) additionally providing the task metric (e.g., average traffic speed) of the initial
expert-designed architecture; (ii) using only the task metric versus also including the average reward
in the feedback; (iii) additionally providing the feature information (representation quality).

5 Conclusion and Future Directions

In this work, we proposed LACER, an LLM-driven composite NAS pipeline that automatically
discovers effective state encoders for multi-source RL, achieving better task performance than
traditional and LLM-based NAS baselines. In future work, we plan to apply LACER in broader
applications such as goal-oriented tasks and robotic control with visual, textual and sensor inputs.

4

References
[1] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-

son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

[2] Zicheng Cai, Yaohua Tang, Yutao Lai, Hua Wang, Zhi Chen, and Hao Chen. Seki: Self-evolution
and knowledge inspiration based neural architecture search via large language models. arXiv
preprint arXiv:2502.20422, 2025.

[3] Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement
learning: Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and
Learning Systems, 2024.

[4] X. Cheng and L. Jin. Learning-based vehicle sequencing for on-ramp merging in mixed traffic.
In Proceedings of the 23rd IEEE International Conference on Industrial Informatics (INDIN),
pages 0–0. IEEE, 2025.

[5] Krishna Teja Chitty-Venkata, Murali Emani, Venkatram Vishwanath, and Arun K Somani.
Neural architecture search for transformers: A survey. IEEE Access, 10:108374–108412, 2022.

[6] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter
optimization at scale. In International conference on machine learning, pages 1437–1446.
PMLR, 2018.

[7] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[8] Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pages 1110–1118,
2024.

[9] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International conference on machine learning, pages 4095–
4104. PMLR, 2018.

[10] Sheila Schoepp, Masoud Jafaripour, Yingyue Cao, Tianpei Yang, Fatemeh Abdollahi, Shadan
Golestan, Zahin Sufiyan, Osmar R Zaiane, and Matthew E Taylor. The evolving landscape of
llm-and vlm-integrated reinforcement learning. arXiv preprint arXiv:2502.15214, 2025.

[11] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 10293–10301, 2021.

[12] Yu Xue, Jiajie Zha, Danilo Pelusi, Peng Chen, Tao Luo, Liangli Zhen, Yan Wang, and Mohamed
Wahib. Neural architecture search with progressive evaluation and sub-population preservation.
IEEE Transactions on Evolutionary Computation, 2024.

[13] Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and
Jun Wang. Efficient reinforcement learning with large language model priors. arXiv preprint
arXiv:2410.07927, 2024.

[14] Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

[15] Xun Zhou, Xingyu Wu, Liang Feng, Zhichao Lu, and Kay Chen Tan. Design principle transfer
in neural architecture search via large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pages 23000–23008, 2025.

5

A Methodology Illustration

Pipeline comparison. Compared to other LLM-based NAS methods (e.g., GENIUS in Figure 3),
our approach is designed to enhance both sample efficiency and solution quality when searching for
composite neural architectures for state encoders in RL.

Init Prompt

Iterative Prompt

LLM Arch Config Performance

Init Arch Best Arch

Figure 3: Pipeline of GENIUS, where I indicates the iteration count.

To achieve this, we incorporate evaluation metrics of the initial architecture into the initial prompt to
provide richer prior context. Additionally, beyond standard task metric, we introduce two supplemen-
tary performance signals—average reward and feature information (i.e., representation quality)—as
comprehensive feedback to the LLM, enabling iterative refinement of candidate architectures (Fig-
ure 4).

Init Prompt

Iterative Prompt

LLM Arch Config Average Reward

Init Arch Task Metric

Feature Information

Best Arch

Performance

Signals
Init Performance

Figure 4: Pipeline of LACER (our method), where I indicates the iteration count.

Performance signals. Our method’s performance signals include three components: (i) task metric:
average speed in the mixed-autonomy traffic control setting, served as the ultimate indicator of target
task; (ii) average reward: incorporated as feedback given that the candidate architectures are for RL
training, which characterizes key RL properties like convergence efficiency; (iii) feature information:
quantified via mutual information (defined as I(X;Y) = H(X)−H(X | Y) for random variables
X and Y) and redundancy (defined as R(X;Y) = H(X) +H(Y)−H(X,Y)), served as a direct
measure of representation quality for the composite state representation architecture. Specifically,
we compute mutual information for feature pairs: time data before/after time encoder, traffic data
before/after traffic encoder, sequence data before/after sequence encoder, and encoded features from
time/traffic/sequence encoders with fused features after fusion encoder to comprehensively address
the composite nature of the state encoder with multiple modules.

Prompt construction. The iterative prompt construction process used in our method is detailed
in Algorithm 1. The conversation history H is strategically pruned to retain only essential in-
formation—including initial architecture, performance signals, task description, and search space
definition—while eliminating redundant and non-structural content. This reduces noise and mitigates
potential LLM forgetfulness in long interactions. In the prompt, different roles are explicitly distin-
guished: the assistant role logs the LLM’s responses inH, while the system and user roles provide
setup and queries, respectively. The initial user prompt U0 is designed to activate the LLM’s prior
knowledge through task description and structured search space modeling, while iterative prompts Ui
reinforce the search space and constraints to maintain robustness throughout generations.

B Experimental Setup and Implementation Details

All experiments were run in parallel on various nodes of the cluster supported by the Center for
High Performance Computing at Shanghai Jiao Tong University, which is equipped with Intel Xeon
ICX Platinum 32-core CPUs and NVIDIA HGX A100 GPUs. Specifically, RL experiments were
implemented within SUMO to simulate traffic environment. Each experiment is allocated with

6

Algorithm 1 Prompt Construction of LACER

Input: System prompt S, Task description D, Search space X , Request R, Initial architecture a0
and its performance p0, Max iterations N

Output: Candidate architecture lists L1, . . . ,LN

1: Initialize conversation historyH ← ∅
2: U0 ← D + X + a0 + p0 +R {First iteration user prompt}
3: Prompt0 ← S + U0
4: L1 ← LLM(Prompt0)
5: v⃗raw ← ParseLLMResponse(L1) {Using Algorithm 2}
6: Append system : S, user : U0, assistant : L1 toH
7: for i = 1 to N − 1 do
8: Ui ← Pi−1 + X +R {Subsequent user prompts}
9: Prompt i← H+ Ui

10: Li+1 ← LLM(Prompti)
11: v⃗raw ← ParseLLMResponse(Li+1) {Using Algorithm 2}
12: Append user : Ui, assistant : Li+1 toH
13: Train and evaluate each architecture in Li+1 in RL framework
14: end for

512GB of memory, repeated with 8 random seeds and reported using mean with error bars, given by
two times the standard error.

Composite architecture design of the RL state encoder. Following Cheng and Jin [4], the
architecture of the state encoder includes a time encoder, traffic encoder, and sequence encoder for
respective data encoding while the fusion encoder processes their concatenated outputs to generate
the encoded state for RL training, as illustrated in Figure 5. All modules use Transformer (chosen
over recurrent alternatives such as LSTMs, given its superior performance on sequential data) with
FFNs. Time and sequence encoders add multi-head self-attention (MHSA) to capture their higher
complexity, temporal variability, and dynamics, unlike preprocessed, macro-level, weakly temporal
traffic data, and the fusion encoder which focused on integration without extra temporal processing
uses only FFN.

Traffic State

Temporal Context

Sequence History

FFN Cell

encoded stateMHSA&FFN Cell FFN Cell

MHSA&FFN Cell

Figure 5: Composite architecture design of the RL state encoder for mixed-autonomy traffic control.

Module-specific search spaces. Based on the state encoder architecture with multiple modules of
distinct functions and specific architecture types in Figure 5, we define module-specific search spaces,
as detailed in Table 1. Following [5], key design choices commonly used in neural architecture
search for Transformers are included: hidden layer dimension (denoted as "dimension" in the table),
dimension expansion ratio ("ratio"), and number of neural network layers ("depth") for the FFN
of each module. For modules with MHSA, the number of attention heads ("heads") is additionally
included; for modules with only FFN, the type of activation function ("activation") is included instead.
Common value ranges are set for all design choices, resulting in a total of approximately 26 million
possible architectures throughout the search space.

Baseline alignment. Traditional NAS methods which we consider as baselines such as DARTS,
PEPNAS, and ENAS were originally designed for computer vision tasks like image classification,
where performance is measured by accuracy and the concept of sample size is applicable. However,
in RL scenarios, accuracy is absent, and the concept of sample size differs. Thus, when applying

7

Table 1: Module-specific search spaces where bold values denote the configurations used by the
Expert baseline.

Module Operation Heads / Activation Dimension Ratio Depth
Time MHSA, FFN {2, 4, 8} {8, 16, 32} {1, 2, 4} {1, 2, 3}
Traffic FFN {relu, gelu, swish} {16, 32, 64} {1, 2, 4} {1, 2, 3}
Sequence MHSA, FFN {2, 4, 8} {8, 16, 32} {1, 2, 4} {1, 2, 3}
Fusion FFN {relu, gelu, swish} {64, 128, 256} {1, 2, 4} {1, 2, 3}

these methods to neural architecture search for state encoders in RL, certain corresponding mappings
are required: (i) Performance: The accuracy used in ENAS and PEPNAS is replaced here by average
speed; similarly, the gradient in DARTS, which reflects validation performance, is also mapped to
average speed. (ii) Sample size: In PEPNAS, the sample size for validating candidates within each
generation increases incrementally, which corresponds here to an incremental increase in training
steps when validating candidates within each generation.

RL training and evaluation details. RL training requires sufficient steps for policy convergence,
typically manifested by reward. In the mixed-autonomy traffic control settings simulated via SUMO,
traffic flow arrives with a fixed periodic distribution, causing observed average vehicle speed to exhibit
corresponding periodicity. Thus, RL policy evaluation also requires adequate steps to encompass
multiple such cycles. To balance RL training convergence, evaluation comprehensiveness, and the
cost of evaluating state encoder architectures, we analyzed the average reward and average speed
(recorded every 1k steps over 1M steps of baseline RL training) as shown in Figure 6. The results
indicate that the average reward converges around 200k steps, while the average speed exhibits a
periodicity of approximately 25k steps. Based on this, each candidate state encoder architecture
was evaluated by integrating it into the RL framework for 200k steps of training and 50k steps of
evaluation.

Parsing of LLM response. To ensure automation of the LLM-based neural architecture search
process, we adopt an algorithm to parse the structured natural language output from LLM into a vector
of design choices, as presented in Algorithm 2. Firstly, the LLM is instructed to frame its architectural
descriptions using a specific prefix (e.g., ’New Architecture’), which allows for the reliable extraction
of the relevant text segment from its complete response. This segment is subsequently tokenized and
parsed using a set of regular expression patterns that map directly to the design choices of the search
space (e.g., heads, depth). The algorithm outputs the raw parsed values, which are then used directly
to instantiate the state encoder for reinforcement learning.

Algorithm 2 Parse LLM Response to Architectures

Input: LLM response R, Prefix string P , Pattern set P (regex patterns for each parameter)
Output: Raw parameter vector v⃗raw

1: text_block← ExtractTextAfterPrefix(R,P) {Get the structured output}
2: tokens← Tokenize(text_block) {Break into processable units}
3: v⃗raw ← [] {Initialize an empty list for design choices}
4: for each pattern pi ∈ P do
5: value← ApplyRegex(pi, tokens) {Match pattern against tokens}
6: v⃗raw.append(value) {Append the parsed value}
7: end for
8: return v⃗raw

LLM and temperature parameter selection. For the proposed LACER method (applied to
NAS for RL state encoders), LLM type and temperature (a hyperparameter regulating LLM output
randomness: higher values enhance diversity, lower values improve determinism) significantly affect
task performance. To analyze the impact of design choices, such as the base LLM and its temperature,
experiments were conducted on LACER using two representative LLMs (Claude Sonnet 4.0, GPT-4)
under temperature configurations of 0.0 and 1.0. As shown in Figure 7, LACER achieved optimal

8

0.0 0.2 0.4 0.6 0.8 1.0
Training Step 1e6

-0.01

0.00

0.01

0.02
Av

er
ag

e
R

ew
ar

d

Average Reward vs Training Step

(a) Average reward over 1M steps

0.0 0.2 0.4 0.6 0.8 1.0
Training Step 1e6

3

4

5

6

7

Av
er

ag
e

Sp
ee

d
(m

/s
)

Average Speed vs Training Step

(b) Average speed over 1M steps

0 50000 100000 150000 200000 250000
Training Step

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

Av
er

ag
e

R
ew

ar
d

Average Reward vs Training Step

(c) Average reward over 250,000 steps

0 50000 100000 150000 200000 250000
Training Step

3

4

5

6

7

Av
er

ag
e

Sp
ee

d
(m

/s
)

Average Speed vs Training Step

(d) Average speed over 250,000 steps

Figure 6: Average reward and average speed during RL training.

performance with Claude Sonnet 4.0 (temperature = 1.0), which was thus adopted in the main
experiments.

1 2 3 4 5 6 7 8 9 10
Candidate Number

5.00

5.05

5.10

5.15

5.20

5.25

5.30

Av
er

ag
e

Sp
ee

d

LACER Performance Across LLMs and Temperature Settings

Claude (Temp=0)
Claude (Temp=1)

GPT (Temp=0)
GPT (Temp=1)

Figure 7: Performance of LACER-1 under different LLM models and temperature settings.

C Additional Experiment Results

Ablation studies To verify the necessity of each core module in the proposed LACER method, we
designed a series of ablation experiments, in which three key prompt components were removed,
respectively: the feature information (FI), the average reward (RI), and the initial architecture
evaluation (IE). This resulted in three variant methods: LACER-1 without FI, LACER-1 without FI
+ RI and LACER-1 without FI + RI + IE. The results in Fig. 8 indicate that the original LACER-1

9

method achieves the best performance. When any of the components mentioned above is removed,
the performance of LACER deteriorates significantly. This phenomenon demonstrates that each of
these components in our LACER method is useful and essential, and their collaborative operation
contributes to the superior performance of the proposed method.

1 2 3 4 5 6 7 8 9
Candidate Number

5.12

5.14

5.16

5.18

5.20

5.22

5.24

Av
er

ag
e

Sp
ee

d

Ablation Study (with 2*Standard Errors)

LACER-1
LACER-1 w/o FI
LACER-1 w/o FI + RI
LACER-1 w/o FI + RI + IE

Figure 8: Performance comparison of LACER-1 with and without different key prompt components.

Time cost The time cost of traditional NAS methods is composed of the evaluation time of each
candidate and the search time of each generation, while the search cost of LLM-based NAS methods
includes the query time of LLM and the processing time of analyzing results of candidates and
constructing prompts. To analyze the impact of query time, we run LACER and other baselines on an
Intel Core i7 CPU and an NIDIA RTX 4070 GPU to avoid the time cost of node scheduling. We then
compare the time cost of the above compositions as shown in Figure 9, where evaluation refers to the
evaluation time, search refers to the search time that does not include query time, and query refers to
the query time. The result indicates that the query time of LLM has a negligible impact on the overall
time cost compared to the evaluation time.

10

0 5 10 15 20 25 30 35 40 45 50
Candidate Number

0

10000

20000

30000

40000

50000

60000

70000

Ti
m

e
C

os
t

Time Cost Comparison
Expert
DARTS
ENAS
PEPNAS

LACER-5
LACER-1
GENIUS

(a) left

Expert DARTS ENAS PEPNAS LACER-5LACER-1 GENIUS
Method

0

10000

20000

30000

40000

50000

60000

70000
Ti

m
e

C
os

t

Time Cost Composition Comparison
Evaluation
Search
Query

(b) right

Figure 9: Left: Time cost comparison between our two LACER variants and baselines; Right: Time
cost composition comparison between our two LACER variants and baselines. The query time
accounts for 1% of the overall time cost of LACER, while the evaluation time accounts for over 97%
of the overall time cost of all methods.

11

	Introduction
	Background and Related Works
	RL state encoding
	Neural architecture search
	LLM for RL

	LACER: An LLM → State Encoder → RL Pipeline
	Problem Setup
	LLM-Driven Neural Architecture Generation
	RL Training and Evaluation

	Experiment: RL-Based Mixed-Autonomy Traffic Control
	Conclusion and Future Directions
	Methodology Illustration
	Experimental Setup and Implementation Details
	Additional Experiment Results

