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l Introduction
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l Multi-Source RL State Encoding
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Designing state encoders for multi-source-RL remains underexplored.
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l Composite Neural Architecture Search
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I LACER: An LLM - State Encoder — RL Pipeline
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Table 1: Module-specific search spaces where bold values denote the configurations used by the
Expert baseline.

Module Operation Heads / Activation Dimension Ratio Depth

Time MHSA, FEN  {2,4,8} (8,16, 32} 1,2,4) {1,2,3)
Traffic FFN {relu, gelu, swish} {16, 32,64} {1,2,4} {1,2,3}
Sequence MHSA, FEFN  {2,4,8} {8,16, 32} {1,2,4} {1,2,3}
Fusion FFN {relu, gelu, swish} {64,128,256} {1,2,4} {1,2,3}
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l Pipeline comparison
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Exploit side info on source-specific encoders beyond performance metric.
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l Results

® Comparison between LACER and baselines

Performance Comparison (with Standard Errors)
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LACER-5 denotes the batch variant (5 candidates per iteration).

Ablation studies

Ablation Study (with 2*Standard Errors)
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