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Toy Network

* 400 homogeneous agents plan to travel from O to D.
* Which link will they choose?

travel costs




Capacitated Toy Network

* 400 homogeneous agents plan to travel from O to D.
* Which link will they choose?

* What if the links have capacity constraints?

travel costs capacity constraints

C1=3 u1=100

c; =6 uz = 300



Minimum Cost Flow Problem

. =
@ - minz = ¢y{x1 + Cxx, + C3X3
S.t.
C2=4 x1+x2+X3=q
0< X1 < Uuq
C3 = 6 0< X9 < U,
0<x3<u;
Capacity:
u; = 100
u, = 200 Solution: x; = 100, x, =200, x3 = 100
uz = 300
Demand:

dJop = 400



Inverse Problem

* What if we observe x = (100,200, 100)

* 1.e., 100 agents choose link 1, 200 choose link 2, 100 choose link 3
e Can we infer the values of u?




Inverse Problem

* What if we observe x = (100,200, 100)

* 1.e., 100 agents choose link 1, 200 choose link 2, 100 choose link 3
e Can we infer the values of u?
* Hint: dual problem




Dual Problem

Cl - 3
0
Cz - 4
C3 - 6 )
Primal
minz = C1x1 + C2x2 + C3X3
Capacity: s.t.
u; = 100 X1+ X2 +X3=¢q
u, = 200 8Sx1Su1
< x,<Uu
u, = 300 =72 =72
3 0 < x3 < ug
Demand:

qop = 400  Solution: x; = 100, x, = 200, x3 = 100

Dual variables:
7; = node potential
w; = link capacity dual (shadow) price

Dual
maxv = qT[O — q7TD —UiW1 —UWp — UzWs

s.t.
g —TTp — W, < C1
TTg —TTp — Wy < (8]
TTg —TTp — W3 < C3
W1, Wy, W3 >0

Solution: wy =3, wy, =2, w3 =0, mp —1p = 6



Complementary Slackness

- c; =3 Dual variables:
7; = node potential
S w; = link capacity dual (shadow) price
5 B Primal Dual
= minz = C1X1 + szz + C3x3 maxv = qT[O - qT[D - u1W1 - u2W2 - u3W3
s.t. S.t.
Capacity: X, +X,+x3=¢q Mg —Tp —W; < (g
u. = 100 OSX:[SU]_ 7T0—T[D_W2SC2
1_200 OSx2Su2 T[O—T[D_WgSCg
Uy = 0 < x3 <u; Wy, Wy, w3 = 0
u; = 300
Demand: Solution: x; = 100, x, = 200, x3 =100 Solution: wy =3, wy, =2, w3 =0, mg—mp =6
dop = 400

Complementary slackness conditions: w; (x; —u;) =0, (¢; + w; —my + mp)x; =0, Vi



Complementary Slackness

- c1 =3 Dual variables:
; = node potential
w; = link capacity dual (shadow) price
Cr = 4
B =16 Primal Dual
3™ minz = C1X1 + C2Xy + C3X3 maxv = (qmiig — qitp — U1W1 — UpWp — U3W3
S.t. S.t.
_ X1 +x,+%x3=¢q Tog—Tp — W1 < (1
Capacity: 0<x; <u Mo —Tp — Wy < Cy
u1:100 OSXZSUZ 7T0—7TD—W3SC3
u, = 200 0=x5sus w1, Wa, w3 = 0
us; = 300 Solution: x; = 100, x; = 200, x3 =100 Solution: wy =3, wy, =2, w3 =0, my, —1p =6
4 * * * % * * -
Demand: Complementary slackness conditions: w; (x; —u;) =0, (¢; + w; — my + p)x; = 0, Vi
dop = 400 When there is no congestion on link i: w; = 0

Impact of binding capacity on agents’ route choices: w;” > 0, x; = y;



Indirect Approach

¢, =3 Dual variables:
; = node potential
w; = link capacity dual (shadow) price

Primal Dual
C3 = 6 minz = C1X1 + CaXxy + C3X3 maxv = qitg — qitp — U1Wq1 — U Wy — UzW3
S.t. S.t.
X1+ x2+x3=¢q To—Tp — W1 < (1
. OSX1SU1 Tog—Tp — Wy < Cy
Capacity: 0<x,<uy Tog — Mp — W3 < C3
ul == 100 OSX3 Sug W1)W2)W3 20
Uz = 288 Solution: x; = 100, x, = 200, x3 = 100 Solution: wy =3, w, =2, w3 =0, mp —p =6
Uz =
When there is no congestion on link i: w;' = 0
Demand: Impact of binding capacity on agents’ route choices: w;" > 0, x; = u;
qop = 400 Indirect approach for inverse problem: instead of finding capacity, find the effects of the

capacity and its interaction with agents — Find w!



Partial Dualization

Dual variables:
; = node potential
w; = link capacity dual (shadow) price

Primal Dual
C3 = 6 minz = C1X1 + Caxy + C3X3 maxv = (g — qitp — U1W1 — UpWp — U3W3
S.t. S.t.
X1+ x, +x3=¢q Tog —Tp — W1 <Cq
. OSx1Su1 Tog—Tp — Wy < Cy
Capacity: 0<x,<uy To —Tp — W3 < C3
ul == 100 OS.Xg Sug Wi, Wp, W3 20
Uz = 288 Solution: x; = 100, x, = 200, x3 = 100 Solution: wy =3, wy, =2, w3 =0, mgp—np =6
Uz = ,
; Partial Dualization Theorem (Ahuja Chl17, p. 658). The flow variables x* = (100, 200, 100)
Demand: solve the following equivalent uncapacitated shortest path problem:
dop = 400

min{Z(ci +w)x;: X +x, +x3=q,%x; =0
i



Multicommodity Flow Problem

q13 = 10
q14 = 20
K=1{(13),(14)}

minz = z Cl'jxijk

(@)
S.t.
injk—ijik=bik, ViEN,kEK
JEN JEN
Z xijk < ul-]-, V(l,]) €A
kew
xijk >0

Theorem (Partial Dualization). Let x7j;, be optimal flows and let w;; be

optimal dual prices for the multicommodity flow problem. Then for each
commodity k, the flow variables x;j;, solve the following uncapacitated

minimum cost flow problem:

min {z (Cijk + Wij)xijk ZA.X'k = b, xijk = O}
@)



Multi-agent Inverse Transportation

Unconstrained shortest path problem Inverse shortest path problem

The restricted master problem can be  For each agent i, given observed
decomposed into subproblems for route choice y;, estimate the
OD pairs: perception of the dual price wy, ;:

min¢g = (c + w)Ty min ¢; " = e; + f;
y ei,fi,vi
Subject to Subject to
Ay =0>b flow conservation Al mEetW—e T :
g3 = 10 weak duality
q14:20 Yae{o:l}» aEA bT ﬂi:((j—{—W—ei{—{})Tyd* lit
K ={(13),(1,4)} individual decision — i<W Trone SR
AET
variable teasibilit
ei,fi >0 Y

non-negativity
W; =W — €; + fl
minimal perturbation
from common prior



Multi-agent Inverse Transportation

Fixed
point

¢~ (g1 wo 1) ¢~ (911, wo Xjp))




[terative Algorithm

Fixed
point

¢~ (g1 wo x7) ¢~ (911 wo Xjp|)
4 \ ~

1
wy W)p| — mz Wi

—

[terative algorithm:

0. Given an initial common prior wy (€.g. previous update), and n = 1.

1. Foreach agent i € P, solve an inverse shortest path problem with augmented link costs in
Eq. (13), wi' = ¢~ (g1, w3, X{)-

2. Update common prior: wi*t = — Y., w™. Setn = n + 1 and go to step 1 if w1 = wl.
p p 0 p| &t i g Y 0 0



[terative Algorithm

: ¢, =3 e Initiate: wy = {0,0,0}
Cr = 4
C3 - 6

Route choice observation:

x, = 100
x, = 200
x5 = 100

[terative algorithm:
0. Given an initial common prior w; (e.g. previous update), and n = 1.

1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in
Eq (13): Wln = (p_l(gir W(;l; xl*)

2. Update common prior: w*! = =Y., w". Setn = n + 1 and go to step 1 if w1 = w.
p p 0 1P| l l g p 0 0



[terative Algorithm

- ¢, =3 e Initiate: wy = {0,0,0}
« Agent group 1: wi = {0,0,0}
Cr = 4
C3 - 6

Route choice observation:

x, = 100
x, = 200
x5 = 100

[terative algorithm:
0. Given an initial common prior w; (e.g. previous update), and n = 1.

1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in
Eq (13): Wln = (p_l(gir W(;l; xl*)

2. Update common prior: w*! = =Y., w". Setn = n + 1 and go to step 1 if w1 = w.
p p 0 1P| l l g p 0 0



[terative Algorithm

¢, =3 e Initiate: wy = {0,0,0}
« Agent group 1: wi = {0,0,0}
 Agent group 2: wy = {1,0,0}

C2=4
C3=6

Route choice observation:

x, = 100
x, = 200
x5 = 100

[terative algorithm:
0. Given an initial common prior w; (e.g. previous update), and n = 1.

1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in
Eq (13): Wln = (p_l(gir W(;l; xl*)

2. Update common prior: w*! = =Y., w". Setn = n + 1 and go to step 1 if w1 = w.
p p 0 1P| l l g p 0 0



[terative Algorithm

: &, =3 » Initiate: wy = {0,0,0}
* Agent group 1: wi = {0,0,0}
S * Agent group 2: w; = {1,0,0}
2 = * Agent group 3: w3 = {3,2,0}
C3 = 6

Route choice observation:

x, = 100
x, = 200
x5 = 100

[terative algorithm:
0. Given an initial common prior w; (e.g. previous update), and n = 1.

1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in

Eq (13): Wln = (p_l(gir W(;l; xl*)
2. Update common prior: wi*! = l%lziep w!'.Setn = n + 1 and go to step 1 if wi* # w.



[terative Algorithm

¢, =3 e Initiate: wy = {0,0,0}
« Agent group 1: wi = {0,0,0}
 Agent group 2: wy = {1,0,0}

=% « Agent group 3: w3 = {3,2,0}
. . . 51
c3 =6 « First iteration: wé = {Z’E’ O}
Route choice observation:
x; = 100
x, = 200
x3 = 100

[terative algorithm:
0. Given an initial common prior w; (e.g. previous update), and n = 1.

1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in
Eq (13): Wln = (p_l(gir W(;l; xl*)

2. Update common prior: wi*! = 1| YiepWt. Setn =n+ 1and gotostep 1 if witt = wl.

_|P



[terative Algorithm

~ ¢, =3 e Initiate: wy = {0,0,0}
« Agent group 1: wi = {0,0,0}
P « Agent group 2: wy = {1,0,0}
o « Agent group 3: w3 = {3,2,0}
. . . 51
C3 =06 * First iteration: Wg = {Z’E’ O}
Route choice observation: e Agent group 1: wé = {Z,%, 0
x; = 100 . 231
%, = 200 Agent group 2: W22 {2,2,0
X3 = 100 « Agent group 3: w§ = {3,2,0}

[terative algorithm:
0. Given an initial common prior w; (e.g. previous update), and n = 1.

1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in

Eq (13): Wln = (p_l(gir W(;l; xl*)

2. Update common prior: wi*! = 1| YiepWt. Setn =n+ 1and gotostep 1 if witt = wl.

_|P



[terative Algorithm

~ c1 =3 e Initiate: wy = {0,0,0}
« Agent group 1: wi = {0,0,0}
P « Agent group 2: wy = {1,0,0}
o « Agent group 3: w3 = {3,2,0}
. . . 51
c3 =6 « First iteration: wé = {Z’E’ O}
Route choice observation: e Agent group 1: wé = {Z,%, O}
;Cl - ;88 « Agent group 2: ws = E,%, O}
xi — 100  Agent group 3: ws = {3,2,0}

Iterative algorithm: * Converge to wy = wy = w, = wz = {3,2,0}

0. Given an initial common prior w; (e.g. previous update), and n = 1.
1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in
Eq (13): Wln = (p_l(gir W(;l; xl*)

2. Update common prior: w*! = =Y., w". Setn = n + 1 and go to step 1 if w1 = w.
p p 0 1P| l l g p 0 0



Online Learning

What if the population arrives sequentially over time?



Online Learning

What if the population arrives sequentially over time?

A new trip
completion i

A new trip
completion i + 1

Prior wy = 0

Initial

Update link capacity dual
variable w = w;_,

Observe graph parameter
g; and chosen path x;

Solve inverse shortest path
* -1 *
Wi = ¢i (.gi' w, xi)

Iteration i

Update link capacity dual
variable w = w;’

Observe graph parameter
gi+1 and chosen path x; ,

Solve inverse shortest path
* — -1 *
Wiv1 = @i (Gi+1, W, Xit1)

Iterationi + 1



Network Monitoring Architecture
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Validation Experiment Design

1. Initiate with values of link capacity dual variables equal to zero for
all links in the study network.

2. Starting at 5:00AM, and every 5 minutes thereafter until 9:00AM,

1.
11.

111.
1V.

For all the trajectories that arrived 1n that period, identify OD pairs.

Run the path reconstruction algorithms to get real-time travelers’ choices for
cach of the OD pairs (in this step, the traveler’s choice 1s assumed as the
shortest path).

Compare the predicted route and the actual route chosen.
Run MAIO to update the dual variables based on the reconstructed path.
Compute the correlation between real travel times and estimated travel time.



Case study: Wuhan Downtown

855 nodes
2833 links

132 samples observed for OD 1

48 samples observed for OD 2 | .o A il . i

153 different path taken for OD 1 i Samples of route diversions for one OD
29 different path taken for OD 2 |



Sensitivity to Network Changes
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Sensitivity to Network Changes

' Temporal profile of link dual
‘variables look quite different !

__________________________________________

__________________________________________

' Link 1708 more accurate =
)  effectiveness of MAIO
. ' depends on OD sampling
' More route observations
b/ | ‘are considered, more
= | i : " 'information on dual
(b) ‘variables is provided
(b) Updated dual variables after adding new OD e




Accuracy Improvement on Estimation

Observed Travel Time VS. Estimated Travel Time

Estimated travel time and real travel time of 180
observed routes from single and two OD pairs

Estimated travel time is
calculated as free flow travel
time plus estimated dual
variables on traveled links

[ e e e e e e e e e e e e e e e e e e
|
|
|
|

Correlations between the
‘observed and estimated
travel time are 0.23 and 0.56

'MAIO provides a good fit to
‘real observations, even
'samples from only two ODs |



