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Toy Network

• 400 homogeneous agents plan to travel from O to D. 
• Which link will they choose?

O D

travel costs



Capacitated Toy Network

• 400 homogeneous agents plan to travel from O to D. 
• Which link will they choose?
• What if the links have capacity constraints?

O D
𝑢! = 100

𝑢" = 200

𝑢# = 300

travel costs capacity constraints



Minimum Cost Flow Problem

O D

Capacity: 
𝑢! = 100
𝑢" = 200
𝑢# = 300

Demand:
𝑞$% = 400

min 𝑧 = 𝑐!𝑥! + 𝑐"𝑥" + 𝑐#𝑥#
s.t.

𝑥! + 𝑥" + 𝑥# = 𝑞
0 ≤ 𝑥! ≤ 𝑢!
0 ≤ 𝑥" ≤ 𝑢"
0 ≤ 𝑥# ≤ 𝑢#

Solution: 𝑥! = 100, 𝑥" = 200, 𝑥# = 100



Inverse Problem

• What if we observe 𝑥 = 100, 200, 100
• i.e., 100 agents choose link 1, 200 choose link 2, 100 choose link 3
• Can we infer the values of 𝑢?

O D
𝑢! = ?

𝑢" = ?

𝑢# = ?



Inverse Problem

• What if we observe 𝑥 = 100, 200, 100
• i.e., 100 agents choose link 1, 200 choose link 2, 100 choose link 3
• Can we infer the values of 𝑢?
• Hint: dual problem

O D
𝑢! = ?

𝑢" = ?

𝑢# = ?



Dual Problem

O D

Capacity: 
𝑢! = 100
𝑢" = 200
𝑢# = 300

Demand:
𝑞$% = 400

Primal
min 𝑧 = 𝑐!𝑥! + 𝑐"𝑥" + 𝑐#𝑥#

s.t.
𝑥! + 𝑥" + 𝑥# = 𝑞
0 ≤ 𝑥! ≤ 𝑢!
0 ≤ 𝑥" ≤ 𝑢"
0 ≤ 𝑥# ≤ 𝑢#

Solution: 𝑥! = 100, 𝑥" = 200, 𝑥# = 100

Dual
max 𝑣 = 𝑞𝜋$ − 𝑞𝜋% − 𝑢!𝑤! − 𝑢"𝑤" − 𝑢#𝑤#

s.t.
𝜋$ − 𝜋% − 𝑤! ≤ 𝑐!
𝜋$ − 𝜋% − 𝑤" ≤ 𝑐"
𝜋$ − 𝜋% − 𝑤# ≤ 𝑐#
𝑤!, 𝑤", 𝑤# ≥ 0

Solution: 𝑤! = 3, 𝑤" = 2, 𝑤# = 0, 𝜋$ − 𝜋% = 6

Dual variables:
𝜋& = node potential
𝑤' = link capacity dual (shadow) price



Complementary Slackness

O D

Capacity: 
𝑢! = 100
𝑢" = 200
𝑢# = 300

Demand:
𝑞$% = 400

Primal
min 𝑧 = 𝑐!𝑥! + 𝑐"𝑥" + 𝑐#𝑥#

s.t.
𝑥! + 𝑥" + 𝑥# = 𝑞
0 ≤ 𝑥! ≤ 𝑢!
0 ≤ 𝑥" ≤ 𝑢"
0 ≤ 𝑥# ≤ 𝑢#

Solution: 𝑥! = 100, 𝑥" = 200, 𝑥# = 100

Dual
max 𝑣 = 𝑞𝜋$ − 𝑞𝜋% − 𝑢!𝑤! − 𝑢"𝑤" − 𝑢#𝑤#

s.t.
𝜋$ − 𝜋% − 𝑤! ≤ 𝑐!
𝜋$ − 𝜋% − 𝑤" ≤ 𝑐"
𝜋$ − 𝜋% − 𝑤# ≤ 𝑐#
𝑤!, 𝑤", 𝑤# ≥ 0

Solution: 𝑤! = 3, 𝑤" = 2, 𝑤# = 0, 𝜋$ − 𝜋% = 6

Dual variables:
𝜋& = node potential
𝑤' = link capacity dual (shadow) price

Complementary slackness conditions: 𝑤&∗ 𝑥&∗ − 𝑢& = 0, 𝑐& + 𝑤&∗ − 𝜋$∗ + 𝜋%∗ 𝑥&∗ = 0, ∀𝑖



Complementary Slackness

O D

Capacity: 
𝑢! = 100
𝑢" = 200
𝑢# = 300

Demand:
𝑞$% = 400

Primal
min 𝑧 = 𝑐!𝑥! + 𝑐"𝑥" + 𝑐#𝑥#
s.t.

𝑥! + 𝑥" + 𝑥# = 𝑞
0 ≤ 𝑥! ≤ 𝑢!
0 ≤ 𝑥" ≤ 𝑢"
0 ≤ 𝑥# ≤ 𝑢#

Solution: 𝑥!∗ = 100, 𝑥"∗ = 200, 𝑥#∗ = 100

Dual
max 𝑣 = 𝑞𝜋$ − 𝑞𝜋% − 𝑢!𝑤! − 𝑢"𝑤" − 𝑢#𝑤#

s.t.
𝜋$ − 𝜋% − 𝑤! ≤ 𝑐!
𝜋$ − 𝜋% − 𝑤" ≤ 𝑐"
𝜋$ − 𝜋% − 𝑤# ≤ 𝑐#
𝑤!, 𝑤", 𝑤# ≥ 0

Solution: 𝑤!∗ = 3, 𝑤"∗ = 2, 𝑤#∗ = 0, 𝜋$∗ − 𝜋%∗ = 6

Dual variables:
𝜋' = node potential
𝑤( = link capacity dual (shadow) price

Complementary slackness conditions: 𝑤&∗ 𝑥&∗ − 𝑢& = 0, 𝑐& + 𝑤&∗ − 𝜋$∗ + 𝜋%∗ 𝑥&∗ = 0, ∀𝑖
When there is no congestion on link 𝑖: 𝑤&∗ = 0
Impact of binding capacity on agents’ route choices: 𝑤&∗ > 0, 𝑥&∗ = 𝑢&



Indirect Approach

O D

Capacity: 
𝑢! = 100
𝑢" = 200
𝑢# = 300

Demand:
𝑞$% = 400

Primal
min 𝑧 = 𝑐!𝑥! + 𝑐"𝑥" + 𝑐#𝑥#
s.t.

𝑥! + 𝑥" + 𝑥# = 𝑞
0 ≤ 𝑥! ≤ 𝑢!
0 ≤ 𝑥" ≤ 𝑢"
0 ≤ 𝑥# ≤ 𝑢#

Solution: 𝑥!∗ = 100, 𝑥"∗ = 200, 𝑥#∗ = 100

Dual
max 𝑣 = 𝑞𝜋$ − 𝑞𝜋% − 𝑢!𝑤! − 𝑢"𝑤" − 𝑢#𝑤#

s.t.
𝜋$ − 𝜋% − 𝑤! ≤ 𝑐!
𝜋$ − 𝜋% − 𝑤" ≤ 𝑐"
𝜋$ − 𝜋% − 𝑤# ≤ 𝑐#
𝑤!, 𝑤", 𝑤# ≥ 0

Solution: 𝑤!∗ = 3, 𝑤"∗ = 2, 𝑤#∗ = 0, 𝜋$∗ − 𝜋%∗ = 6

Dual variables:
𝜋' = node potential
𝑤( = link capacity dual (shadow) price

When there is no congestion on link 𝑖: 𝑤&∗ = 0
Impact of binding capacity on agents’ route choices: 𝑤&∗ > 0, 𝑥&∗ = 𝑢&
Indirect approach for inverse problem: instead of finding capacity, find the effects of the 
capacity and its interaction with agents – Find 𝑤!



Partial Dualization

O D

Capacity: 
𝑢! = 100
𝑢" = 200
𝑢# = 300

Demand:
𝑞$% = 400

Primal
min 𝑧 = 𝑐!𝑥! + 𝑐"𝑥" + 𝑐#𝑥#
s.t.

𝑥! + 𝑥" + 𝑥# = 𝑞
0 ≤ 𝑥! ≤ 𝑢!
0 ≤ 𝑥" ≤ 𝑢"
0 ≤ 𝑥# ≤ 𝑢#

Solution: 𝑥! = 100, 𝑥" = 200, 𝑥# = 100

Dual
max 𝑣 = 𝑞𝜋$ − 𝑞𝜋% − 𝑢!𝑤! − 𝑢"𝑤" − 𝑢#𝑤#

s.t.
𝜋$ − 𝜋% − 𝑤! ≤ 𝑐!
𝜋$ − 𝜋% − 𝑤" ≤ 𝑐"
𝜋$ − 𝜋% − 𝑤# ≤ 𝑐#
𝑤!, 𝑤", 𝑤# ≥ 0

Solution: 𝑤! = 3, 𝑤" = 2, 𝑤# = 0, 𝜋$ − 𝜋% = 6

Dual variables:
𝜋' = node potential
𝑤( = link capacity dual (shadow) price

Partial Dualization Theorem (Ahuja Ch17, p. 658). The flow variables 𝑥∗ = 100, 200, 100
solve the following equivalent uncapacitated shortest path problem:

min <
'

𝑐' + 𝑤' 𝑥' : 𝑥! + 𝑥" + 𝑥# = 𝑞, 𝑥' ≥ 0



Multicommodity Flow Problem

1 2

3

4
𝑞!# = 10
𝑞!) = 20

𝐾 = 1,3 , 1,4

𝑐!" = 3

𝑐!# = 7

𝑐!) = 8

𝑐"# = 3

𝑐") = 4

min 𝑧 = ?
&,'

𝑐&'𝑥&'+

s.t.

?
'∈-

𝑥&'+ −?
'∈-

𝑥'&+ = 𝑏&+ , ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾

?
+∈.

𝑥&'+ ≤ 𝑢&' , ∀(𝑖, 𝑗) ∈ 𝐴

𝑥&'+ ≥ 0
Theorem (Partial Dualization). Let 𝑥&'+∗ be optimal flows and let 𝑤&'∗ be 
optimal dual prices for the multicommodity flow problem. Then for each 
commodity 𝑘, the flow variables 𝑥&'+∗ solve the following uncapacitated
minimum cost flow problem:

min <
',(

𝑐'(* + 𝑤'( 𝑥'(* : 𝐴𝑥* = 𝑏, 𝑥'(* ≥ 0



Multi-agent Inverse Transportation
Unconstrained shortest path problem Inverse shortest path problem

1 2

3

4
𝑞!# = 10
𝑞!) = 20

𝐾 = 1,3 , 1,4

𝑐!" = 3

𝑐!# = 7

𝑐!) = 8

𝑐"# = 3

𝑐") = 4

flow conservation

individual decision

weak duality

strong duality
capacity dual 
variable feasibility
non-negativity

For each agent 𝑖, given observed 
route choice 𝑦&∗, estimate the 
perception of the dual price 𝑤(,&:

The restricted master problem can be 
decomposed into subproblems for 
OD pairs:

𝜋&
𝜋&

minimal perturbation 
from common prior



Multi-agent Inverse Transportation

𝑤*

𝑤/ 𝑤/

𝑤! 𝑤|1| 𝑤&



Iterative Algorithm

𝑤!

𝑤! 𝑤!

𝑤" 𝑤|$| 𝑤%

Iterative algorithm:



Iterative Algorithm

Iterative algorithm:

• Initiate: 𝑤*! = 0,0,0

Route choice observation:
𝑥! = 100
𝑥" = 200
𝑥# = 100

O D



Iterative Algorithm

Iterative algorithm:

• Initiate: 𝑤*! = 0,0,0
• Agent group 1: 𝑤!! = 0,0,0

Route choice observation:
𝑥! = 100
𝑥" = 200
𝑥# = 100

O D



Iterative Algorithm

Iterative algorithm:

• Initiate: 𝑤*! = 0,0,0
• Agent group 1: 𝑤!! = 0,0,0
• Agent group 2: 𝑤"! = 1,0,0

Route choice observation:
𝑥! = 100
𝑥" = 200
𝑥# = 100

O D



Iterative Algorithm

Iterative algorithm:

• Initiate: 𝑤*! = 0,0,0
• Agent group 1: 𝑤!! = 0,0,0
• Agent group 2: 𝑤"! = 1,0,0
• Agent group 3: 𝑤#! = 3,2,0

Route choice observation:
𝑥! = 100
𝑥" = 200
𝑥# = 100

O D



Iterative Algorithm

Iterative algorithm:

• Initiate: 𝑤*! = 0,0,0
• Agent group 1: 𝑤!! = 0,0,0
• Agent group 2: 𝑤"! = 1,0,0
• Agent group 3: 𝑤#! = 3,2,0

• First iteration: 𝑤*" =
+
,
, !
"
, 0

Route choice observation:
𝑥! = 100
𝑥" = 200
𝑥# = 100

O D



Iterative Algorithm

Iterative algorithm:

• Initiate: 𝑤*! = 0,0,0
• Agent group 1: 𝑤!! = 0,0,0
• Agent group 2: 𝑤"! = 1,0,0
• Agent group 3: 𝑤#! = 3,2,0

• First iteration: 𝑤*" =
+
,
, !
"
, 0

• Agent group 1: 𝑤!" =
$
%
, !
"
, 0

• Agent group 2: 𝑤"" =
#
"
, !
"
, 0

• Agent group 3: 𝑤#" = 3,2,0

Route choice observation:
𝑥! = 100
𝑥" = 200
𝑥# = 100

O D



Iterative Algorithm

Iterative algorithm:

• Initiate: 𝑤*! = 0,0,0
• Agent group 1: 𝑤!! = 0,0,0
• Agent group 2: 𝑤"! = 1,0,0
• Agent group 3: 𝑤#! = 3,2,0

• First iteration: 𝑤*" =
+
,
, !
"
, 0

• Agent group 1: 𝑤!" =
$
%
, !
"
, 0

• Agent group 2: 𝑤"" =
#
"
, !
"
, 0

• Agent group 3: 𝑤#" = 3,2,0
• Converge to 𝑤*∗ = 𝑤!∗ = 𝑤"∗ = 𝑤#∗ = 3,2,0

Route choice observation:
𝑥! = 100
𝑥" = 200
𝑥# = 100

O D



Online Learning
What if the population arrives sequentially over time?



Online Learning
What if the population arrives sequentially over time?



Network Monitoring Architecture



Validation Experiment Design

1. Initiate with values of link capacity dual variables equal to zero for 
all links in the study network.

2. Starting at 5:00AM, and every 5 minutes thereafter until 9:00AM,
i. For all the trajectories that arrived in that period, identify OD pairs.
ii. Run the path reconstruction algorithms to get real-time travelers’ choices for 

each of the OD pairs (in this step, the traveler’s choice is assumed as the 
shortest path).

iii. Compare the predicted route and the actual route chosen.
iv. Run MAIO to update the dual variables based on the reconstructed path.
v. Compute the correlation between real travel times and estimated travel time.



Case study: Wuhan Downtown



Sensitivity to Network Changes

1708



Sensitivity to Network Changes

1708



Accuracy Improvement on Estimation


