Cost-aware Bayesian Optimization via
the Pandora’s Box Gittins Index

@ar in NeurIPS’24

Qian Xie (Cornell ORIE)

Joint work with Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin

INFORMS’24 Data Mining Best General Paper Competition



Coauthors

Alexander Terenin

Peter Frazier Ziv Scully

Raul Astudillo



World of Parameter Optimization

Hyperparameter tuning:

Training parameters ——

Control optimization:

Control parameters ———

Plasma physics:

Reactor parameters —>
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World of Parameter Optimization

Black-box optimization:

Input parameters —— .. —> Performance metrics
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Bayesian Optimization
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Bayesian Optimization
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f ~Gaussian Process
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Bayesian Optimization
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Goal: max [Et r?gx f(x:)

f ~Gaussian Process
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Bayesian Optimization

N

What to evaluate next?
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Bayesian Optimization

N

Optimal policy?
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Challenges of Bayesian Optimization
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Continuous search domain
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Challenges of Bayesian Optimization
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Correlated values

|
Continuous search domain
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Challenges of Bayesian Optimization
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Correlation & continuity = Intractable MDP
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Challenges of Bayesian Optimization

N

Intractable MDP = Optimal policy unknown
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Popular Policy: Expected Improvement

current best observed
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Popular Policy: Expected Improvement
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current best observed

EI(x) = E[max(f(x) — ¥pest, 0) | D]

“Iimprovement”

max, EIf|D (X} Ybest)

One-step approximation to MDP
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Popular Policy: Expected Improvement

Other improvement-based policy:
* Probability of Improvement

* Knowledge Gradient
e Multi-step Lookahead EI
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Approaches to Bayesian Optimization

* Improvement-based:
* Expected Improvement
* Probability of Improvement
* Knowledge Gradient
e Multi-step Lookahead EI
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Approaches to Bayesian Optimization

* Improvement-based
* Entropy-based

* Upper Confidence Bound Why another approach?
* Thompson Sampling

e Our work: Gittins Index
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Another Challenge: Varying Evaluation Costs
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Another Challenge: Varying Evaluation Costs
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Cost-aware Bayesian Optimization
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Goal: sup E t=r1r,lg?.(.,T f(x:)
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“Cost-aware Bayesian Optimization.” “Multi-step Budgeted .. Unknown Evaluation Costs™
[Lee, Perrone, Archambeau, Seeger’21] [Astudillo, Jiang, Balandat, Bakshy, Frazier’21]

33



One-step

Cost-aware Bayesian Optimization

Uniform costs Varying costs

Expected improvement

max, EIf|D (X5 Ypest)
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One-step

Cost-aware Bayesian Optimization

Uniform costs Varying costs

Expected improvement Expected improvement per cost

max,, EIf| p(%; Vbest) [Snoek, Larochelle, Adams’21]
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Cost-aware Bayesian Optimization

Uniform costs Varying costs

Expected improvement Expected improvement per cost

maxy Elfp(X; Ypest) max, Elfp (X; Ypest)/c(x)

36



One-step

Cost-aware Bayesian Optimization

Uniform costs Varying costs
Expected improvement Expected improvement per cost
maxy Elfp(X; Ypest) max, Elfp(X; Ypest)/c(x)

Why divide?
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Cost-aware Bayesian Optimization

Uniform costs Varying costs
One-step  Expected improvement Expected improvement per cost
maxy Elfp(X; Ypest) max, Elfp(X; Ypest)/c(x)

EI and EIPC policy can be arbitrarily bad under varying costs!
[Astudillo, Jiang, Balandat, Bakshy, Frazier’21]
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Cost-aware Bayesian Optimization

Uniform costs Varying costs
One-step  Expected improvement Expected improvement per cost
Multi-step Multi-step Lookahead EI Budgeted Multi-step Lookahead EI

[Astudillo, Jiang, Balandat, Bakshy, Frazier’21]
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Cost-aware Bayesian Optimization

Uniform costs Varying costs
One-step  Expected improvement Expected improvement per cost
Multi-step Multi-step Lookahead EI Budgeted Multi-step Lookahead EI
Upper Confidence Bound ?
Thompson Sampling ?

Our view: lack of a guidance to incorporate costs
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Cost-aware Bayesian Optimization
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Cost-aware Bayesian Optimization

Uniform costs Varying costs
One-step  Expected improvement Expected improvement per cost
Multi-step Multi-step Lookahead EI Budgeted Multi-step Lookahead EI
Upper Confidence Bound ?
Thompson Sampling ?

New design principle: Gittins Index

naturally co@

43



Expected Improvement
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Elfp(x) = E[max(f(x) = ¥pest, 0) | D]

maxy EIf|D (X5 Ybest)
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Expected Improvement Gittins Index

DAY AT
NUAVaE VAV

El¢p(x) = E[max(f(x) — Ypest, 0) | D] Gl p(x) = g s.t. Elgp (x; g) = c(x)

maxy EIf|D(x: Ybest) max, GIf|D(x)
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Expected Improvement Gittins Index

DAY A
A Ve VAV

El¢p(x) = E[max(f(x) — Ypest, 0) | D] Glrp(x) = g s.t. Elp (x; g) = c(x)

maxy EIf|D(x» Ybest) max, GIf|D(x)

Temporal simplification to MDP Spatial simplification to P
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Our Approach: Spatial Stimplification
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Our Approach: Spatial Stimplification

% 3 x
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Our Approach: Spatial Stimplification

% 3 x
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Bayesian Optimization
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Continuous Discrete

Correlated = Independent



Our Approach: Spatial Stimplification
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Our Approach: Spatial Stimplification
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Bayesian Optimization Pandora’s Box [Weitzman’79]
Continuous = Discrete (allow varying costs
Correlated = Independent

Optimal policy: Gittins index
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Intuition Behind Pandora’s Box Gittins Index

- X

o
c(x) [e]
Open closed box GI(x) Take opened box
' ~ 9
| l | l ]
Profit: E[max(f(x), g)] — c(x) Profit: g

GI(x): solution g to E[max(f(x),g)] —c(x) = g
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How to translate Gittins index?

2 e
1 N N N N
;“
N
) _ _—
0 [ [
0.0 0.2 0.4 0.6 0.8 1.0
Bayesian Optimization Pandora’s Box [Weitzman’79]
Continuous = Discrete
Correlated — Independent

How to translate?
< Optimal policy: Gittins index
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How to translate Gittins index?

21 *
1 N cn N N
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N
e o o
) [e] L[]
00 02 04 06 0.8 1.0
Bayesian Optimization Pandora’s Box [Weitzman’79]
Continuous — Discrete
Correlated — Independent
incorporate posterior
Our policy < Optimal policy: Gittins index

max, Gl p(x) max, GI(x)
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Is Gittins good 1n Bayesian Optimization?
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Bayesian Optimization Pandora’s Box [Weitzman’79]
Continuous = Discrete
Correlated — Independent

Incorporate posterior
[s Gittins index good? <  Gittins index 1s optimal

max, Gl p(x) max, GI(x)
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Ackley function

Experiment Setup: Objective Functions

Samples from prior

Matern52

f(x)

Synthetic

Figure from [Terenin’22]

»
wn

'10 - : Figure from infpy N
Lunar Lander

Pest Control

Empirical

- L

Figure from OpenAl Gym

Figure from ChatGPT
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Best Observed Value

Experiment Results

Synthetic
(a) Samples from prior (b) Ackley function
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* Easy-to-compute?

FAQ
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FAQ

* Easy-to-compute?
Yes, EI + bisection
* Any theoretical results?
Yes, expected-budget-constrained = cost-per-sample
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Theoretical Result

max best observed under budget
cN cN cN
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— - 2
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Budgeted Pandora’s Box

Expected budget constraint

Optimal policy?

max (best observed — costs)
a%s) cN cN a9

Pandora’s Box

Cost per sample

Optimal policy: Gittins index
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Theoretical Result

max best observed under budget max (best observed — scaled costs)
a9 a%s) cN cN cN cN a9
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Budgeted Pandora’s Box Pandora’s Box

Expected budget constraint Cost per sample

Optimal policy &  Optimal policy: Gittins index

extension to [Aminian,
Manshadi, Niazadeh’24
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Theoretical Result

budget-dependent

max best observed under budget max (best observed — scaled costs)
a9 a%s) cN cN cN cN a9
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* Tuning parameters?
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FAQ

* Easy-to-compute?

Yes, EI + bisection
* Any theoretical results?

Yes, expected-budget-constrained = cost-per-sample
* Tuning parameters?

Yes, control unit conversion
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New Design Principle: Gittins Index

Problem
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Bayesian optimization
with varying costs

Impact
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Future potential
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black-box processes
with partial feedback
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Check our paper on ArXiv!

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index."
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