Abstract

Bayesian optimization is a technique for efficient global optimization
of black-box unknown functions. In many practical settings, it is
desirable to explicitly incorporate function evaluation costs into acqui-
sition functions used for Bayesian optimization. To do so, we develop
a connection between cost-aware Bayesian optimization and Pan-
dora’s Boz, a decision problem from economics. The Pandora’s Box
problem admits a Bayesian-optimal solution based on an expression
called the Gittins index, which can be reinterpreted as an acquisition
function. We demonstrate empirically that this acquisition function
performs well on cost-aware Bayesian optimization, particularly in
medium-high dimensions. We further show that this performance
carries over to classical Bayesian optimization without explicit eval-
uation costs. Our work constitutes a first step towards integrating
techniques from Gittins index theory into Bayesian optimization.
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Our work: EBC and CPS problems are equivalent
(extends prior work on generalized Pandora’s boxes to continuous rewards)

Key difference from Bayesian optimization: no correlations
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Pandora’s Box Gittins Index:
a new acquisition function

where g solves  Elyjg,, .. (2;9) = Ac(x)

Idea: extend a* by plugging posterior in for f
A: cost scaling factor from budget-constraint Lagrangian duality
Computation: one-dimensional convex optimization
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Simplified problem: one
closed and one open box
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Should one open the closed box? Depends on ¢!
If both opening and not opening is optimal: ¢ is a fair value

afBCL pick points according to their fair values

Behavior and Comparisons
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Cost-aware Bayesian Optimization via the Pandora’s Box Gittins Index
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