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• Network systems rely on data collection and transmission
– Intelligent transportation systems (ITSs)
– Manufacturing systems (production lines)
– Communication networks

• Cyber components susceptible to data loss and data errors
– E.g., traffic sensors and traffic signals/lights can be 

intruded and manipulated
– Need secure-by-design features

Introduction

Example: dynamic routing in ITSs

• Poisson arrivals of rate 𝜆
• Parallel servers with service rate 𝜇
• State: vector of queue lengths 
• Dynamic routing: dynamically allocate jobs (e.g., customers, 

vehicles, components, data packets) to servers
• Provably optimal routing policy: join-the-shortest-queue (JSQ)
• Existing works based on perfect observation of system state 

and perfect implementation of dynamic routing
• Faulty/failed closed-loop can be worse than open-loop (e.g., 

round robin or Bernoulli routing)
• Research gap: designing fault-tolerant dynamic routing

Model: Parallel-queueing system

Theorem 1. The parallel n-queue system with 
reliability failures is stable if for	any	non-diagonal	
vector	𝑥,

𝛽 𝑥 > 1 −
𝜇|𝑥| − 𝜆𝑥:;<

𝑎𝜆(∑;@A< 𝑝;𝑥; − 𝑥:;<)
.

Theorem 2. The parallel n-queue system with security 
failures is stable if for	any	non-diagonal	vector	𝑥,

α 𝑥 1 − 𝛽 𝑥 <
𝜇|𝑥| − 𝜆𝑥:;<
𝜆(𝑥:GH − 𝑥:;<)

.

Main results Numerical Studies

The incentive to protect is non-decreasing in the failure 
probability 𝑎, non-increasing in the tech cost 𝑐J, and non-
decreasing in the throughput 𝜆 (estimation of the optimal 
protecting policy is based on the truncated policy iteration).

Conclusions        

• Without secure dynamic routing, random faults and 
malicious attacks can destabilize the queueing system 

• The optimal protecting strategy and the equilibrium of 
attacker-defender game have threshold-properties

• System operator has higher incentive to protect when 
– the failure probability is higher
– the tech cost is lower
– the throughput is higher
– the queue lengths are less ‘‘balanced’’
– the queues are close to empty

• Our proposed optimal protecting policy (closed-loop) 
performs better than the benchmark (open-loop)

• Optimal protecting strategy (resp. equilibrium) can be 
estimated by truncated policy iteration (resp. adapted 
Shapley’s algorithm)
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Research questions

Modeling & analysis
• How to model stochastic & recurrent faults/attacks?
• How to quantify attacker’s incentive?
• How to quantify the impact due to faults/attacks?
• How to evaluate various security risks?

Resource allocation
• How to allocate limited/costly security resources, 

including redundant components, diagnosis mechanisms?

Decision making
• How to make protecting (resp. defending) decisions in the 

face of random faults (resp. malicious attacks)?

• Random malfunction: operator fails to send routing instructions
• Denial-of-service: operator loses observation temporarily
• With constant probability 𝑎, a job joins a random queue
• Operator protects routing with state-dependent probability 
𝛽(𝑥)

• Minimize expected cumulative discounted queuing + tech cost

Model: Protection against reliability failures

• Spoofing: attacker compromises sensing
• Attacker manipulates routing with state-dependent probability 
𝛼(𝑥) and sends the job to the longest queue

• Operator defends routing with state-dependent probability 𝛽 𝑥
• Max/minimize expected cumulative discounted reward/loss

Model: Defense against security failures

Markov decision process
Theorem 3. Consider a parallel n-queue system with 
reliability failures. The optimal protecting policy 𝛽∗(𝑥)
is threshold-based.
• Operator either protects or does not protect (no 

probabilistic protection), i.e. 𝛽∗ 𝑥 ∈ {0,1};
• Operator is more likely to protect when the queues 

are 1) less ‘‘balanced’’; (2) close to empty.
Proof : HJB equation and induction on value iteration.

Attacker-defender stochastic game
Theorem 4. The Markovian perfect equilibrium has the 
following regimes depending on 𝑐G, 𝑐J and 𝛿∗ 𝑥 =
𝜆(max

U
𝑉∗ 𝑥 + 𝑒U −minU 𝑉∗ 𝑥 + 𝑒U )

– 𝛿∗ < 𝑐G ⇒ (0, 0) (low risk)
– 𝑐G ≤ 𝛿∗ < 𝑐J ⇒ (1, 0) (medium risk)
– 𝛿∗ > max(𝑐G, 𝑐J) ⇒ ([\

]∗
, 1 − [^

]∗
) (high risk)

Equilibrium strategies 𝛼∗ , 𝛽∗ are both threshold-based.
Proof: Adapted Shapley’s algorithm and induction.

Tipping points of the operator starting to protect

Characterization of 
the threshold

Characterization of 
the optimal policy

The optimal closed-loop protecting policy 𝛽∗ performs 
better in terms of the simulated cumulative discounted cost, 
compared to the open-loop policies (benchmark) never 
protect and always protect.


