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ABSTRACT

ROBUST AND SECURE FEEDBACK CONTROL FOR
QUEUEING NETWORKS

by

Qian Xie

Advisor: Prof. Joseph Y.J. Chow, Ph.D.

Co-Advisor: Prof. Li Jin, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (Transportation Planning and Engineering)

September 2021

Feedback control is commonly used in a variety of queueing networks, including trans-
portation networks, production lines, supply chains, and communication networks. Most
existing works base on the full knowledge of model data, the perfect observation of the
tra�c states, and the perfect implementation of the control. However, in practical settings,
such data may not always be available and accurate. Therefore, this thesis fills the research
gap on 1) the analysis of queueing network with data loss/errors; 2) the design of robust
and secure feedback control that resists non-stationary environments and/or security risks.
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Chapter 1

Introduction

Queueing model is a model that quantifies the queuing and delays due to random ar-

rival times and/or random service times but not captures demand and capacity fluctuations.

Specifically, a queue is a waiting line and a queueing network is a network of servers and

queues. The jobs (customers, vehicles, packets, etc.) arrive at random. They join the

waiting queues when the servers are busy. Queueing models have been widely applied

to many engineering systems such as transportation network, manufacturing system (pro-

duction line), communication nework, and computer network. Examples include security

checkpoint, toll booth, airport landing, ride-sharing, retail counter, and call center.

Feedback control, or closed-loop control, is a class of strategy that uses feedback from

the output at the input to reduce errors and improve stability. Typical feedback control on

queueing networks include routing, sequencing, service rate control, and admission control.

Routing refers to allocating jobs to downstream servers while sequencing refers to selecting

a job from the waiting queue to serve, e.g., first come first serve (FCFS). Service rate

control determines the power of the servers. Admission control holds or rejects jobs to avoid

congestion propagation. In this thesis, I consider all above feedback control in Chapter 2

when we analyze and design model-data independent control for Jackson queueing networks.

Then in Chapter 3 and Chapter 4, I just focus on dynamic routing for parallel queues

(servers).

Stability and optimization are two important topics associated with queueing networks

with feedback control. However, unlike simple queueing systems (e.g., M/M/1), it is hard

to compute the steady-state probabilities in general. Therefore, we need some useful tools.

For stability, or mean boundedness, we can use Lyapunov function. For optimization, we

can use theory of optimal control or Hamilton-Jacobi-Bellman (HJB) equation. In Chapter

4, both two topics are discussed, while in Chapter 2 and Chapter 3, I only focus on the

stability issues.

Feedback control on queueing network relies on data collection and transmission via

connected sensing and actuating components. However, in practical settings, such data

may not always be available and accurate. Besides, the lack of robust-by-design and secure-
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by-design features make the components susceptible to data loss and data errors. One

real-world instance is the Internet of Vehicles (IoV), where vehicles not only communicate

with each other but also with pedestrians and infrastructures. The vehicles typically make

decisions based on the real-time routing guidance services such as Google Maps and Waze.

Such services heavily depend on tra�c data but also face risks of random malfunctions and

malicious attacks [1,67]. It has been reported that an artist used phones to create a phantom

tra�c jam on navigation apps [38]. We can expect that in the near future, hackers can spoof

tra�c sensor data or create phantom tra�c jams in navigation apps for selfish or malicious

intent (e.g., leading other vehicles to take a di↵erent road). Under such circumstances, the

information provided by such services can be faulty, and the misled travelers may su↵er

extra travel times.

To the best of my knowledge, most existing analysis and design approaches base on the

full knowledge of model data (i.e., arrival rates and service rates) [5], the perfect observation

of the tra�c states (i.e., queueing lengths), and the prefect implementation of the control

[21,23]. There are research gaps on the control design for networks with partial knowledge

of model data and imperfect state observation/control implementation. Nevertheless, the

impact of random and strategic sensing faults has not been well understood; practical fault-

tolerant mechanisms have not been developed either. Meanwhile, trip advisory providers,

transportation agencies, and the public are in general concerned with the security of IoV.

To address such concerns, this thesis develops theoretical foundations and practical insights

for building robust and secure queueing control for network systems including IoV. The

modeling and analysis approach for sensing faults can also be extended to other real-world

applications such as ride-sharing, public transit, and aircraft control.

The rest of this thesis is organized as follows: Chapter 2 targets on the design of stabi-

lizing MDI (modal data-independent) control policies. Such control policies select control

actions including routing, sequencing, and/or holding. Chapter 3 focuses on the analysis of

stability conditions and guaranteed throughput of the parallel routes with faulty informa-

tion of tra�c states. Chapter 4 aims at the design of secure control for the parallel queues

under the risks of faulty data and/or faulty routing.



Chapter 2

Stabilizing Model

Data-Independent Control

This chapter is a joint work with Li Jin. Submitted to IEEE Transaction on Control of

Network Systems. Published under Creative Commons CC By 4.0 License [88].

Classical queueing network control strategies typically rely on accurate knowledge of

model data, i.e. arrival and service rates. However, such data are not always available

and may be time-variant. To address this challenge, we consider a class of model data-

independent (MDI) control policies that only rely on tra�c state observation and network

topology. Specifically, we focus on the MDI control policies that can stabilize multi-class

Markovian queueing networks under centralized and decentralized policies. Control ac-

tions include routing, sequencing, and holding. By expanding the routes and constructing

piecewise-linear test functions, we derive an easy-to-use criterion to check the stability of

a multi-class network under a given MDI control policy. For stabilizable multi-class net-

works, we show that a centralized, stabilizing MDI control policy exists. For stabilizable

single-class networks, we further show that a decentralized, stabilizing MDI control policy

exists. In addition, for both settings, we construct explicit policies that attain maximal

throughput and present numerical examples to illustrate the results.

3
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2.1 Introduction

Control on multi-class queueing networks has been studied in numerous contexts of

transportation, logistics, and communication systems [46,55,75,91]. Most existing analysis

and design approaches rely on full knowledge of model data, i.e., arrival and service rates,

to ensure stability and/or optimality [5]. However, in many practical settings, such data

may be unavailable or hard to estimate, and may be varying over time. Such challenges

motivate the idea of model data-independent (MDI) control policies. MDI control policies

select control actions, including routing, sequencing, and/or holding, according to state

observation and network topology but independent of arrival/service rates. Such policies are

easy to implement and, if appropriately designed, can resist modeling error or non-stationary

environment. However, the stability of general open multi-class queueing networks with

centralized or decentralized MDI control policies has not been well studied.

In this chapter, we consider the stability of multi-class queueing networks with throughput-

maximizing MDI control policies. Particularly, we focus on acyclic open queueing networks

with Poisson arrivals and exponential service times. Jobs (customers) are classified ac-

cording to their origin-destination (OD) information. Service rates are independent of job

classes. A network is stabilizable if there exists a control policy that ensures positive Har-

ris recurrence of the queueing process, whether the network is open-loop or closed-loop,

centralized or decentralized [19]. By standard results on Jackson networks, stabilizability

is equivalent to the existence of a (typically model data-dependent) stabilizing Bernoulli

routing policy [30]. We assume that the class-specific arrival rates and the server-specific

service rates are unknown to the controller. The main results are as follows:

1. An easy-to-use criterion to check the stability of a multi-class network under a given

MDI control policy (Proposition 1).

2. For a multi-class network, a stabilizing centralized MDI control policy exists if and

only if the network is stabilizable (Theorem 1).

3. For a single-class network, a stabilizing decentralized MDI control policy exists if and

only if the network is stabilizable (Theorem 2).

Previous works on stability of queueing networks are typically based on full knowledge

of model data [15, 20, 29, 46, 69, 70, 79]. So far, the best-studied MDI control policy is the

join-the-shortest-queue (JSQ) routing policy for parallel queues [21, 23, 28, 35, 54, 58, 80, 84]

or simple networks [9], which requires only the queue lengths and does not rely on model

data [14]. When and only when the network is stabilizable, i.e., the demand is less than

capacity (service rate), the JSQ policy guarantees the stability of parallel queues/simple

networks [9,27] and the optimality of homogeneous servers [21]. However, JSQ routing does

not guarantee stability of more complex networks [14]. MDI routing for general networks

has been numerically evaluated [50], but no structural results are available. Most studies
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on MDI routing for general networks are not aimed for stability [45,61,66,81]. In addition,

decentralized dynamic routing has been considered for single origin-destination networks

[33, 68] but not in MDI settings.

To design stabilizing MDI control policies, we first develop a stability criterion (Propo-

sition 1) based on route expansion for queueing networks and explicit construction of a

piecewise-linear test function. The expanded network is essentially a parallel connection

of all routes from the set of origins to the set of destinations. With this expansion, we

use insights on the behavior of parallel queues and of tandem queues to construct the test

function and derive the stability criterion. The test function can be used to obtain a smooth

Lyapunov function verifying a negative drift condition. The piecewise-linear test function

technique was proposed by Down and Meyn [19]; however, their implementation relies on lin-

ear programming formulations to determine parameters of the test function, which depends

on model data. We extend this technique to the MDI setting using explicitly constructed

test functions.

Based on the stability criterion, we design control policies in centralized and decen-

tralized settings. First, for multi-class networks, we present a stabilizing centralized MDI

control policy requiring dynamic routing and preemptive sequencing named JSR policy

(Theorem 1). The control policy is obtained by minimizing the mean drift of the piecewise-

linear test function, and the mean drift is guaranteed to be negative if and only if the

network is stabilizable. The JSR policy, which is centralized and MDI, maximizes through-

put among all control policies. Compared with other centralized policies, it does not require

knowledge of model data, and compared with other MDI policies (e.g., JSQ), it guarantees

stability for any stabilizable networks. Second, for single-class networks, we present a de-

centralized routing and holding policy that guarantees stability (Theorem 2). Such policies

can also maximize the throughput since the stabilizability of the network implies that the

throughput can be as large as close to the capacity. The results are closely related to the

theory on the classical JSQ routing policy [14] and the decentralized max-pressure control

policy [83].

The rest of this chapter is organized as follows. Section 2.2 defines the multi-class queue-

ing network model. Section 2.3 presents the stability criterion based on route expansion

and piecewise-linear test function. Section 2.4 and Section 2.5 consider the control design

problem in centralized and decentralized settings respectively. Section 2.6 gives concluding

remarks.
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2.2 Multi-class queueing network

Consider an acyclic network of queueing servers with infinite bu↵er spaces. Let N be

the set of servers. Each server n has an exponential service rate µ̄n. The network has a

set S of origins and a set T of destinations. jobs are classified according to their origins

and destinations. That is, we can use an origin-destination (OD) pair (S, T ) 2 C to denote

a job class, or simply class. For notational convenience, classes (OD pairs) are indexed by

c = (Sc, Tc). jobs of class c arrive at Sc according to a Poisson process of rate �c � 0. We

assume that service rates are independent of job class.

The topology of the network is characterized by routes between origins and destinations.

We use |r| to denote the number of servers on route r. LetRc be the set of routes between Sc

and Tc, and define R =
S

c2C Rc. Below is an example network to illustrate the notations.

Example 1. Consider the Wheatstone bridge network in Fig. 2.1. Two classes of jobs

!!""#$# #!

!%""&$& #%

(1,3), 1
from 1

(1,3), 2
from 3

(4), 1
from 4

(3,5), 1
from 3

(3,5), 2
from 5

(2), 1
from 2

(1,3,5), 1
from 1

(1,3,5), 2
from 3

(1,3,5), 3
from 5

!!

!%

#%

#!

&̅! &̅%

&̅' &̅(
&̅)"!

"%

'̅! '̅%

'̅) '̅('̅'

(1,2), 1
from 1

(1,2), 2
from 2

(4,5), 1
from 4

(4,5), 2
from 5

(3), 1
from 3

Figure 2.1: A two-class queueing network.

arrive at S1 (resp. S2) with �1 > 0 (resp. �2 > 0). The set of servers is N = {1, 2, . . . , 5}
and the set of OD-specific routes are

R1 = {(1, 3), (4)}, R2 = {(2), (3, 5)}.

The state of the network is defined as follows. Let x̄ = [x̄cn]n2N ,c2C be the vector of

class-specific job numbers, where x̄
c
n is the number of jobs of class c in server n, either

waiting or being served. Let X̄ be the space of x̄. We use X̄(t) to denote the state of the

queueing process at time t.

We consider three types of control actions, viz. routing, sequencing, and holding. All

control actions are essentially Markovian (in terms of x̄ plus additional auxiliary states) and

are applied at the instant of transitions, which include the arrival of a job at an origin or the

completion of service at a server. Routing refers to allocating an incoming job to a server

downstream to the origin or allocating a job discharged by a server to another downstream

server. Sequencing refers to selecting a job from the waiting queue to serve. The default

sequencing policy is the first-come-first-serve (FCFS) policy. For the multi-class setting, we

consider the preemptive-priority that can terminate an ongoing service and start serving

jobs from another class, while the job with incomplete service is sent back to the queue.
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Holding refers to holding a job that has completed its service in the server while blocking

the other jobs in the queue from accessing the server.

Following [16], we say that a queueing network is stable if the queueing process is positive

Harris recurrent. For details about the notion of positive Harris recurrence for queueing

networks, see [15, 16, 19]. Finally, we say that the network is stabilizable if a stabilizing

control exists. One can check the stabilizability using the following result:

Lemma 1. An open acyclic queueing network is stabilizable if and only if there exists a

vector [⇠r]r2R such that

⇠r � 0, 8r 2 R,

�c =
X

r2Rc

⇠r, 8c 2 C,

X

r2R:n2r
⇠r < µ̄n, 8n 2 N .

The proof and implementation are straightforward.



8

2.3 Stability criterion

In this section, we derive a stability criterion for multi-class networks under given control

policies. The techniques that we use include the route expansion of the original network and

the explicit construction of a piecewise-linear test function based on the network topology.

In Section 2.3.1, we construct an expanded network based on the original network. In

Section 2.3.2, we apply a piecewise-linear test function to the expanded network to obtain

a stability criterion (Proposition 1) for both the expanded and the original networks.

2.3.1 Route expansion

For the convenience of constructing test function, we first introduce the route expansion.

Route expansion refers to the construction of an expanded network based on the topology of

original network (defined in Section 2.2). The high-level idea is to decompose the network

into routes, and the specific procedures are:

1. Place all routes R in the original network in parallel.

2. Add two-way connections between duplicates of servers in the original network.

For example, Fig. 2.2 shows the expanded network constructed from the original network

in Fig. 2.1.

!"

!#

$#

$"

&̅" &̅#

&̅' &̅(
&̅)*+,-,

*-.+.

/0-,,""

/0-,,'"

/0-.,##

/0-.,)#

2)

!"*-,+, $"

!#*-.+. $#

(1,3), 1
from 1

(1,3), 2
from 3

(4), 1
from 4

(3,5), 1
from 3

(3,5), 2
from 5

(2), 1
from 2

!"*" $"

!#*# $#

1
(from 1)

3a
(from 3)

4
(from 4)

3b
(from 3)

5
(from 5)

2
from 2

Figure 2.2: Route expansion of the network in Fig. 2.1.

We call ”servers” in the expanded network as subservers, since they are obtained by

duplicating actual servers in the original network. Subservers are indexed by k, ck 2 C is

the class index, rk 2 R is the route index, and ik 2 {1, 2, . . . , |rk|} is the numbering of

subserver k on route rk. We use k 2 r to refer to that subserver k is on route r. Let K
be the set of all subservers and Kc be the set of subservers with ck = c. We use nk 2 N
to denote the actual server that corresponds to subserver k. In addition, let kp (resp. ks)

denote the subserver immediately upstream (resp. downstream) to subserver k.

The state of the expanded network is x = {xck; k 2 K, c 2 C}, denoting the vector of

number of class-c jobs in subserver k. Let xk :=
P

c2C x
c
k, k 2 K. The expanded state space

is X = Z|C|⇥|K|
�0 . Note that the states of the expanded network and the states of the original
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network are related by

x̄
c
n =

X

k2K:nk=n

x
c
k, k 2 K, (2.1)

for each n 2 N .

The routing policy is characterized by ⇡ : X ! [0, 1]|C|⇥|K|2 , where ⇡c
k,k0 is the probability

that a class-c job is routed from subserver k to subserver k0.

The holding policy is characterized by ⇣ : X ! {0, 1}|K|, where ⇣k specifies whether

subserver k is holding (⇣k(x) = 0) or not holding (⇣k(x) = 1) when the current state is x.

Two subservers k and k
0 are duplicating if nk = nk0 . Note that the service rates of

duplicating subservers are coupled in the sense that for each server n 2 N , at a given time,

at most one subserver k such that nk = n can be actively serving jobs, or active. This can

be modeled as an imaginary service rate control policy µ : X ! R|K| such that the service

rate µk(x) of subserver k satisfies

X

k:nk=n

µk(x)  µ̄n, 8x 2 X .

Such control policy is essentially equivalent to the class-based preemptive sequencing in the

original network.

Note that {X(t) : t � 0} is a Markov process, and the positive Harris recurrence refers

to that there exists a unique invariant measure ⌫ on X such that for every measurable set

D ✓ X with ⌫(D) > 0 and for every initial condition x 2 X ,

Pr{⌧D <1|X(0) = x} = 1,

where ⌧D = inf{t � 0 : X(t) 2 D}. Also, though {X̄(t) : t � 0} is not a Markov process, it

will eventually converge to a steady state distribution.

The route expansion technique not only expands the network but also decomposes the

state variables. Jobs can move along the expanded network using two transition mecha-

nisms. One is actual transition, referring to moving a job from subserver k (or an origin)

to its downstreamsubserver ks (or a destination). The other is imaginary transition that

moves a job from one subserver k to a duplicating subserver k0 thereof, see imaginary switch

in Section 2.5. Imaginary transitions always occur instantaneously. Note that an actual

transition corresponds to a transition in the original network, while an imaginary transition

does not; this is also revealed in (2.1).

One can always map a control action in the expanded network to the original network.

However, an MDI control policy may not exist on the state space of the original network; we

do need an expanded state space for MDI control. In addition, we allow imaginary control

actions in the expanded network, including imaginary service rate control and imaginary
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switch; see Section 2.4 and Section 2.5. Such imaginary actions only make sense in the

expanded network and do not correspond to actual service rate control or switch in the

original network.

2.3.2 Stability of the expanded network

After introducing the expanded network and the mathematical definition of the control

policy, the main question of this paper can be expressed in a formal way as follows.

Given an expanded queueing network and a control policy � = (⇡, µ, ⇣), how can we tell

if the control policy � is stabilizing, i.e., the expanded network is stable under �?

The answer of this question will be given in Proposition 1. Before that, we need to

introduce the test function technique first. As opposed to linear programming-based con-

struction in [19], we provide an explicit construction, where parameters of the test function

do not rely on solving any optimization problems. The high level idea is to identify the bot-

tlenecks and their upstream subservers. Our construction is based on the route expansion

described in the previous subsection.

1. For each class c 2 C and expanded state x 2 X , define

gc(x) := max
Kc✓Kc:

2Kc)p2Kc

X

k2Kc

akxk,

where ak 2 (0, 1) is a parameter.

2. Define a piecewise-linear test function

V (x) := max
C✓C

X

c2C
bcgc(x),

where bc 2 (0, 1) is a parameter.

We call V (x) the test function rather than the Lyapunov function, since strictly speaking,

a smooth Lyapunov function should be developed based on the piecewise-linear test function

to verify the Foster-Lyapunov stability criterion. Down and Meyn [19] showed that as long

as a piecewise-linear test function can be determined, one can always smooth it to obtain a

qualified C
2 Lyapunov function.

Remark 1. The test functions we proposed in this work are MDI. But generally speaking,

they do not need to be MDI since it does not a↵ect the control policies to be MDI.

Definition 1 (Dominance). Consider state x 2 X .

1. We call C⇤ a set of dominant classes if

C
⇤ 2 argmax

C✓C

X

c2C
bcgc(x).
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Each class c 2 C
⇤ is a dominant class.

2. We call K⇤
c a set of dominant class-c subservers if

K
⇤
c 2 argmax

Kc✓Kc:
k2Kc)kp2Kc

X

k2Kc

akxk.

Each subserver k 2 K
⇤
c is a dominant class-c subserver.

3. A route r 2 Rc is dominant if it includes dominant class-c subservers, i.e. there exists

dominant class-c subserver k 2 K
⇤
c such that k 2 r.

Let Rc be the set of dominant class-c routes.

4. A subserver b 2 K
⇤
c is called a bottleneck if it is a dominant class-c subserver while

its immediate downstream subserver bs /2 K
⇤
c is not.

Remark 2. A route or server is dominant if changes in its tra�c state immediately a↵ect

the test function V .

A regime X of the piecewise-linear test function is a subset of X such that there exist

C
X ✓ C, K

X =
S

c2CX K
X
c ✓ K, and R

X =
S

c2CX R
X
c ✓ R where C

X
,K

X
c , R

X
c are

dominant for each x 2 X, i.e., the test function is linear over X. Let X be the set of

regimes; note that
S

X2X X = X .

Definition 2 (Mean velocity and drift). Consider a multi-class network with state x 2 X
under an expanded control policy � = (⇡, µ, ⇣).

1. The mean velocity at state x is a function v : X ! R|K| such that for each k 2 K,

vk(x) :=
X

c2C
�c⇡

c
Sc,k(x) + µkp(x)⇣kp(x)� µk(x)⇣k(x).

where ⇡
c
Sc,k

is the probability that a class-c job is routed from origin Sc to subserver k,

while µk and ⇣k are the controlled service rate and the holding status of the subserver

k respectively.

2. Given X 2X such that x 2 X, the mean drift over X is given by

D
X(x) :=

X

c2CX

bc

X

k2KX
c

akvk(x).

Remark 3. In our subsequent analysis, the mean drift DX(x) of the test function will play

the role of infinitesimal generator applied to a Lyapunov function; see [19] for the connection

between the test function and the Lyapunov function.

The main result of this section is as follows:
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Proposition 1. Consider a multi-class network under the expanded control policy �. Sup-

pose there exist constants M < 1, ✏ > 0, and ak, bc 2 (0, 1) (8 c 2 C, k 2 Kc), such that

for each X 2X and each x 2 X where |x|=
P
k2K

xk > M ,

X

c2CX

bc

X

k2KX
c

akvk(x)  �✏. (2.2)

Then, the network is stable.

Proof. Consider the test function V (x). By its definition, if x 2 X, we have

V (x) =
X

c2CX

bc

X

k2KX
c

akxk.

The mean drift is given by

D
X(x) =

X

c2CX

bc

X

k2KX
c

akvk(x)

(2.2)
 ��|CX |�1

✏  ��|C|�1
✏, x : |x|> M.

One can then apply [19, Theorem 1] and [19, Lemma 5] to obtain the stability of the network.

⇤
As a benchmark, the approach in [19, Theorem 1] requires solving linear programs

to obtain parameters of the test functions in Proposition 1, while our approach explicitly

constructs the parameters (see Section 2.4 and Section 2.5). Moreover, the proposed control,

which is independent of model data, guarantees stability if and only if the network is

stabilizable (see Theorem 1 and Theorem 2), while the approach in [19] relies on knowledge

of model data.
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2.4 Centralized control for multiple classes

In this section, we consider the “join-the-shortest-route (JSR)” policy (a joint routing

and sequencing policy) for centralized control. The JSR policy is MDI and constructed

based on the expanded network. We will show that it is stabilizing if and only if the

network is stabilizable.

The test functions are constructed as follows.

1. For each class c 2 C, each route r 2 Rc, and each expanded state x 2 X , let

fr(x) := max
k2r

↵
ik�1

X

j:ijik

xj ,

gc(x) := max
Rc✓Rc

�
|Rc|�1

X

r2Rc

fr(x),

where ↵ 2 (0, 1),� 2 (0, 1) are constant parameters.

2. The piecewise-linear test function is given by

V (x) := max
C✓C

�
|C|�1

X

c2C
gc(x),

where � 2 (0, 1) is a constant parameter.

Let the parameters be such that

↵ = � � |R|�1
|R| , � � |C|�1

|C| , (2.3)

and follow the notions of dominance accordingly (see Definition 1). Note that such MDI

parameters ↵,�, � always exist. The control that we consider in this subsection only depends

on ↵,�, � and is thus MDI. Specifically, we define the JSR policy as follows:

Definition 3 (Join-the-shortest-route (JSR) policy).

1. (Routing) At an origin S, an incoming job of class c is allocated to the route r
⇤ 2 Rc

such that

r
⇤ 2 argmin

r2Rc

fr(x).

If there is only one minimum, then r
⇤ must be a non-dominant route. Otherwise, let

b
⇤ be the bottleneck on route r

⇤. Then, an incoming job of class c is allocated to the

route r
⇤ 2 Rc with the largest ib⇤, which is denoted by ic. Further ties are randomly

broken.
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2. (Imaginary service rate control) Let Kn be the set of subservers corresponding to server

n and let B be the set of bottlenecks for a given x. Then, a subserver k 2 Kn is activated

if k 2 B. If multiple subservers are in Kn\B, then activate the subserver k⇤ such that

k
⇤ = argmin

k2Kn\B
{ick + |Rck |};

ties are randomly broken. This is to ensure that the bottlenecks are active to discharge

jobs and only one of the duplicating subservers can be active.

The main result of this section is the following:

Theorem 1 (Stability of JSR policy). The JSR policy stabilizes a multi-class network if

and only if the network is stabilizable.

This theorem implies that the JSR policy is also throughput-maximizing, as long as

the network is stabilizable, i.e., the demand is less than the total capacity. Note that the

stabilizability can be easily checked using Lemma 1.

In the rest of this section, we apply Theorem 1 to study the stability of the Wheat-

stone bridge network under the JSR policy (Subsection 2.4.1) and then prove this theorem

(Subsection 2.4.2).

2.4.1 Numerical Example

Consider the network in Fig. 2.1 and suppose that �1 = �2 = � = 1 and µ̄n = µ = 1 for

n = 1, 2, 4, 5 and µ̄3 = 1
4 . This example is for illustrating the route expansion and the test

function construction.

Note that under the above model parameters, the decentralized JSQ policy is desta-

bilizing. To see this, µ̄1 = µ̄4 implies that on average, class-1 jobs are evenly distributed

between server 1 and server 4. Thus, the average departure rate of class-1 jobs from server 1

is 1
2 , which exceeds the service rate of server 3. Therefore, the queue at server 3 is unstable.

The main reason that the JSQ policy is destabilizing is the ignorance of downstream con-

gestion. As X̄3(t) gets large, a reasonable action is to allocate fewer class-1 jobs to server

1. However, the JSQ policy disallows such far-sighted decisions.

An alternative centralized stabilizing routing policy can be the following JSR policy:

1. A class-1 job arriving at S1 is routed to server 1 if X̄1
1 (t) + X̄

1
3 (t) < X̄

1
4 (t), to server

4 if X̄1
1 (t) + X̄

1
3 (t) > X̄

1
4 (t), and randomly otherwise.

2. A class-2 job arriving at S2 is routed to server 3 if X̄2
3 (t) + X̄

2
5 (t) < X̄

2
2 (t), to server

2 if X̄2
3 (t) + X̄

2
5 (t) > X̄

2
2 (t), and randomly otherwise.

3. The dominant class has a higher priority.
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That is, when jobs are routed at S1, the decision is based on not only the local state (X̄1(t)

and X̄4(t)), but also the state further downstream (X̄3(t)).

The expanded network is shown in Fig. 2.2. Each block in the figure represents a

subserver. In particular, subservers 3a and 3b are decomposed from server 3; the other

servers are remained. Solid arrows correspond to actual transitions in an original network,

while dashed arrows correspond to imaginary transitions between duplicating subservers.

In the expanded network, a job can move along both solid and dashed arrows. The

color of an arrow shows which class can move along it: blue means class (S1, T1), red means

(S2, T2), and purple means both. For ease of presentation, we label (S1, T1) as class 1 and

(S2, T2) as class 2. For example, a job of class (S1, T1) can visit subservers 4, 1, 3a, 3b and

the destination T1.

In the expanded network, the JSR policy works as follows.

1. A class-1 job arriving at S1 is routed to subserver 4 if X4(t) < X1(t) + X3a(t), to

subserver 1 if X4(t) > X1(t) +X3a(t), and randomly otherwise.

2. A class-2 job arriving at S2 is routed to subserver 3b if X3b(t) + X5(t) < X2(t), to

subserver 2 if X3b(t) +X5(t) > X2(t), and randomly otherwise.

3. If subserver 3a is dominant while subserver 3b is non-dominant, and server 3 is serving

a class-2 job, then server 3 preempts the class-2 job being served in 3b to the class-1

job in 3a, and vice versa. If both subserver 3a and subserver 3b are dominant, then

server 3 gives priority to class-2 job since the index of 3b is smaller.

By Theorem 1, the network can be stabilized by the JSR policy if and only if

�1 < 2, �2 < 2, �1 + �2 <
9

4
.

We use the following parameters for the test function:

↵ = � = � =
3

4
, ✏ =

⇣3
4

⌘5
.

One can verify that the above parameters satisfy (2.3) and Proposition 1 by considering the

following cases:

1. Only one route is dominant. In this case, an incoming job is always allocated to a

non-dominant route, leading to non-positive contribution to the mean drift:

D
X(x)  ���↵µ = �

⇣3
4

⌘3
 �✏.

2. Two routes with di↵erent OD pairs are dominant. This case is analogous to the
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previous case:

D
X(x)  ���↵µ = �

⇣3
4

⌘3
 �✏.

3. Two routes with the same OD pair or more than two routes are dominant. In such

cases, the mean drift satisfies

D
X(x)  ��

3(�� µ� ↵µ) = �
⇣3
4

⌘5
 �✏.

Consequently, the network is stable under the MDI JSR policy.

2.4.2 Proof of Theorem 1

In this subsection, we will the su�ciency and the necessity respectively, based on the

connection between the sign of the mean drift and the stabilizability of the network. When

analyzing the mean drift, we consider two parts: external arrivals and internal transmission.

We first show that any internal transmission does not positively contribute to the mean

drift and then show that any positive contribution from external arrivals can always be

compensated by internal transmissions.

Internal transmissions

Note that under the JSR policy, every job remains on the route assigned to the job when

it enters the network. Hence, internal transmissions only occur between subservers on the

same route.

Given x, consider an internal transmission from subserver k to subserver j; this implicitly

requires xk � 1. The definition of dominance ensures that if j is dominant, then so is k.

Hence, we need to consider the following cases:

1. If k and j are both dominant, the transmission leads to zero contribution to the mean

drift DX(x) for all X such that x 2 X.

2. If k is dominant and j is non-dominant, the transmission leads to the following con-

tribution to the mean drift:

�↵ik�1
µk(x)  0.

Hence, internal transmissions never lead to positive contribution to the mean drift.

External arrivals

Given x 6= 0, consider a regime X 2 X such that x 2 X. For each c 2 C, the JSR

policy ensures that if there exists a non-dominant route in Rc, then an incoming job must
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be allocated to a non-dominant route in Rc, leading to non-positive contribution to the

mean drift. Hence, we only need to consider dominant classes c such that every route in Rc

is dominant, i.e. RX
c = Rc. Recall that C⇤ ✓ C is the set of dominant classes. The part of

the mean drift associated with c 2 C
⇤ satisfies

D
X
c (x)  �

|C⇤|�1
�
|Rc|�1

⇣
↵
ic�1

�c �
X

b2BX :cb=c

↵
ib�1

µb(x)
⌘

:= �
|C⇤|�1�X

c (x)

over any regimes of the piecewise-linear test function, where ic is given in Definition 3.

Lemma 2. When x 6= 0, there is no empty bottleneck, i.e.

xb � 1. (2.4)

Proof.

Since x 6= 0 and rb is dominant, we have

X

k:ikib

xk > 0.

If ib = 1, then the above inequality directly implies (2.4).

Now consider the case that ib � 2. Since b is a bottleneck, we have

↵
ib�1

X

k2rb:ikib

xk � ↵
ib�2

X

k2rb:ikib�1

xk,

which implies

xb � (1� ↵)
X

k:ikib

xk > 0

and thus we have (2.4). ⇤
Lemma 2 is to ensure that the bottlenecks are none-empty to discharge jobs and thus

contribute negative terms to the drift.

Next, we show the su�ciency of Theorem 1. Based on the definition of the routing

policy (see Definition 3), 8b 2 BX , we have ib  ic when the incoming job is allocated to a
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dominant route. Then

X

c2C⇤

�X
c (x) 

X

c2C⇤

�
|Rc|�1

↵
ic�1

⇣
�c �

X

b2BX :cb=c

µb(x)
⌘

=
X

c2C⇤

↵
ic+|Rc|�2

⇣
�c �

X

b2BX :cb=c

µb(x)
⌘

:=
X

c2C⇤

↵c�c

Without loss of generality assume C
⇤ = {1, 2, · · · ,m} and

i1 + |R1| i2 + |R2| · · ·  im + |Rm|.

Then by using Abel transformation (summation by parts), the right hand side of the

above inequality (abbr. RHS):

RHS =
m�1X

i=1

(↵i � ↵i+1)
iX

j=1

�j + ↵m

mX

j=1

�m.

Based on the assumption, we have ↵i � ↵i+1 and

iX

j=1

�j =
iX

j=1

⇣
�j �

X

b2BX :cb=j

µb(x)
⌘

=
iX

j=1

�j �
X

nb:b2BX
i

µ̄nb

=
iX

j=1

�j �
X

n2Ni

µ̄n

< 0,

where Bi is the set of bottlenecks in the first i classes and Ni is the min-cut of the original

network with the first i classes. Here we use the definition of the imaginary service rate

control (see Definition 3) and Lemma 1.

Since RHS < 0, we have
P

c2C⇤ �X
c (x) < 0 and thus DX

c (x) < 0. Then by noting that

internal transmissions lead to non-positive contributions to the mean drift, we have

D
X(x) 

X

c2C⇤

D
X
c (x) < 0,

which implies stability. ⇤
Finally, the necessity is apparent: if a network is not stabilizable, then there exists no

MDI control that can stabilize the network.
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2.5 Decentralized control for a single class

For a single-class network, we can drop the class index and use xk to denote the number

of jobs in subserver k. Note that such network has a single origin and a single destination.

Again we can do route expansion on such network.

We consider a decentralized MDI control policy as follows.

Definition 4 (JSQ with artificial spillback). The JSQ with artificial spillback (JSQ-AS)

policy is as follows:

1. (Routing) A discharged job is routed to the shortest downstream queue, with ties ran-

domly broken.

2. (Holding) For each subserver k, any job which has finished the service will be held if

and only if Xsk(t) � Xk(t).

3. (Imaginary switch) When a dominant subserver k is inactive while its non-dominant

duplicate k
0 is active, and both are not in the holding status, then the job in k

0 is

moved to (and discharged from) k after service, and then routed to the downstream of

k (i.e., sk).

Note that under the holding policy, the process {X(t); t � 0} admits an invariant set

Q ✓ X given by

Q := {x 2 X : xsk  xk, k 2 K}. (2.5)

Since we consider the long-time stability of the network, it su�ces to consider the states

in an invariant set. The above result indicates that in the invariant set Q, the queue size

of any subserver is upper-bounded by the queue size of its immediate upstream subserver.

The JSQ-AS policy is decentralized in the sense that control actions on subserver

k only depend on local tra�c information: the number of jobs in duplicate subservers

{xk0 : nk = nk0} and that in immediate downstream subservers {xsk0 : nk = nk0}. A key

characteristic of such policies is that congestion information can propagate through the

network via the forced holding: if a subserver becomes congested (i.e. xk gets large), the

congestion will propagate to the upstream subservers in a cascading manner (“artificial

spillback”). Importantly, such artificial spillback does not undermine throughput like the

natural spillback caused by the limited bu↵er size. The reason is that though congestion

can propagate, the queue size in any downstream subserver is not upper-bounded. Artificial

spillback is the main di↵erence between the JSQ-AS policy and the classic JSQ policies.

Note that though the JSQ-AS policy is constructed based on the expanded network,

its actions can always be converted to the ones in the original network. Importantly, the

decentralized control in the expanded network must also be decentralized in the original
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network. Also note that the imaginary switch has no impact on the original network or the

test function.

The main result of this section is as follows:

Theorem 2 (Stability of JSQ-AS policy). For the route expansion of a single-class network,

the JSQ-AS policy is stabilizing if and only if

� < µ̄
mc

, (2.6)

where µ̄
mc is the min-cut service rate of the original network.

This theorem implies that JSQ-AS policy is also a throughput-maximizing policy since

we allow any throughput that satisfies (2.6).

In the rest of this section, we apply Theorem 2 to study the stability of the Wheatstone

bridge network under the JSQ-AS policy (Subsection 2.5.1) and then prove this theorem

(Subsection 2.5.2).

2.5.1 Numerical Example
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Figure 2.3: A single-class queueing network and its expanded network.

Consider the original network with route expansion in Fig. 2.3. Again suppose that

� = 1, µ̄n = 3
4 for n = 1, 2, · · · , 5. Similarly, with the above parameters, the JSQ policy is

destabilizing since the queue at server 5 is unstable. However, in the decentralized setting,

the control actions can only depend on the local state, say the routing decision at the origin

can be based on X̄1(t) and X̄4(t), but not X̄5(t). A remedy is to introduce the holding

policy (artificial spillback) to the JSQ policy so that the downstream congestion can be

relieved and the local state can somehow reflect the states further downstream.

In the expanded network, server 1 is decomposed into subserver 1a and 1b, server 5 is

decomposed into subserver 5a and 5b. The states in the original network and those in the

expanded network satisfy X̄1(t) = X1a(t)+X1b(t) and X̄5(t) = X5a(t)+X5b(t). The initial

states of the expanded network can be not unique. Say the initial queue size of server 1 is

2, then the initial queue sizes of subserver 1a and 1b can be 2, 0 or 1, 1 or 0, 2 respectively.

Then the states are updated based on the model and our JSQ-AS policy. For example, the

routing decision at the origin is based on X1a(t), X1b(t) and X4(t) rather than X̄1(t) and

X̄4(t); a job which has just finished the service at server 3 will be held if X5a(t) � X3(t),
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once released, it will be routed to the shorter downstream queue by comparing X5a(t) and

X5b(t).

2.5.2 Proof of Theorem 2

This proof uses the connection between the stabilizability condition (2.6) and the sign of

the mean drift. But before showing the mean drift is negative, we first present the explicit

MDI piecewise-linear test function and several key lemmas that can help us analyze the

mean drift.

The piecewise-linear test function is constructed as follows:

V (x) := max
K✓K:

2K)p2K

⇢
1 + (|K|�1)�

|K|
X

k2K
xk

�
,

where � can be any small value such that 0 < � < 1.

The following lemmas are useful in proving Theorem 2 where we consider the regime

X ✓ Q containing x.

Lemma 3. A bottleneck can not be in the holding status.

Proof. Otherwise, the bottleneck must have at least one downstream subserver. By (2.5),

xsk � xb. Since b is a bottleneck, we have

1 + (|KX |�2)�
|KX |�1

X

k 6=b

xk 
1 + (|KX |�1)�

|KX |
X

k2KX

xk, (2.7)

which implies

(1� �)
X

k2KX

xk  |KX |[1 + (|KX |�2)�]xb. (2.8)

Since xb  xsk , we have

(1� �)
X

k2KX

xk < |KX |(1 + |KX |�)xsk ,

which is equivalent to

1 + (|KX |�1)�
|KX |

X

k2KX

xk <
1 + |KX |�
|KX |+1

⇣ X

k2KX

xk + xsk

⌘
,

contradicting with the fact that subserver b is dominant and subserver sk is non-dominant.

⇤

Corollary 1. Based on (2.8), we have xb > 0, i.e., any bottleneck b must be non-empty.
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This corollary and Lemma 3 ensure that all bottlenecks can discharge customers and

contribute negative terms to the drift.

Lemma 4. Let k1r be the first subserver on route r, then either the route with the smallest

xk1r
is non-dominant or every route is dominant.

Proof. If there is only one route, then that route must be dominant. Now assume there

are at least two routes and route r̂ has the smallest xk1r , i.e. 8 r 2 R, xk1r̂  xk1r
. Suppose

k
1
r̂ 2 K

X and 9 r 2 R s.t. k
1
r /2 K

X . Note that by (2.5), xb  xk1r̂
 xk1r

, then from (2.7)

we have

1 + (|KX |�1)�
|KX |

X

k2KX

xk <
1 + |KX |�
|KX |+1

⇣ X

k2KX

xk + xk1r

⌘
,

contradicting with our supposition. Therefore, either r̂ is non-dominant or every route in

R is dominant. ⇤

Lemma 5. If x 2 X makes every route r 2 R dominant, then we have

X

k2BX

µk(x) =
X

n:n=nk,k2BX

µ̄n

Proof. Once there is an inactive bottleneck k and a non-dominant but active duplicate

subserver k0, the imaginary switch mechanism will move the job being served in k
0 to k and

move one job in k to k
0. This is allowed since both k and k

0 contain at least one job due to

the fact that a job being served in k
0 and the bottleneck k must be non-empty. ⇤

Similar to the proof of Theorem 1, we first analyze the internal transmissions and then

the external arrivals.

Internal transmissions

In the proof of Theorem 1, we have already discussed the case where internal trans-

missions between subservers are on the same route. However, unlike the JSR policy, the

JSQ-AS policy allows internal transmissions between subservers on di↵erent routes. Hence,

we also need to consider the internal transmission from subserver k to subserver j where

rk 6= rj .

The definition of dominance ensures that if k is non-dominant, so is sk. According to

the routing policy, xsk � xj . Let ` be the first non-dominant subserver on route rk and b be

the bottleneck on route rj . If j is non-dominant, then by (2.5), we have x` � xsk � xj � xb.

Now from (2.7) we can obtain

1 + (|KX |�1)�
|KX |

X

k2KX

xk <
1 + |KX |�
|KX |+1

⇣ X

k2KX

xk + x`

⌘
,
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contradicting with the definition of dominant subservers.

Thus, it cannot be the case that k is non-dominant and j is dominant, which implies

that any internal transmission does not positively contribute to the mean drift.

External arrivals

According to Lemma 4, if a non-dominant route exists, then the routing policy guar-

antees that an arriving job must be routed to the first subserver on a non-dominant route

r; this leads to non-positive contribution to the mean drift. Otherwise, every route is

dominant. Then for any x 2 Q (x 6= 0), the drift satisfies

D
X(x)

Corollary 1
 1 + (|KX |�1)�

|KX |

⇣
��

X

b2BX

µb(x)⇣b(x)
⌘

(2.5)
=

1 + (|KX |�1)�
|KX |

⇣
��

X

b2BX

µb(x)
⌘

Lemma 5
=

1 + (|KX |�1)�
|KX |

⇣
��

X

n:n=nk,k2BX

µ̄n

⌘

Lemma 1
< 0,

which completes the proof. ⇤
The JSQ-AS policy cannot be directly applied to multi-class network, because the imag-

inary switch mechanism may move a job to the subserver of a di↵erent class with a di↵erent

destination. Although the imaginary service rate control in the JSR policy can be used

for multiple classes, it needs global information such as the information of dominance and

bottlenecks for the preemption, so it is not suitable for the decentralized setting. The design

of a decentralized MDI control policy for multi-class network can be a future work.
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2.6 Concluding remarks

This chapter studies the stability of open queueing networks under a class of model

data-independent control policies. In addition, we derive an easy-to-use stability criterion

based on route expansion of the network and explicit piecewise-linear test functions. With

the stability criterion, we generalize the classical join-the-shortest-queue policy to ensure

stability and attain maximum throughput under centralized/decentralized settings. Our

analysis and design can also be applied to specific network control problems with stability

issues.

For the future studies, one research direction can be the stabilizing decentralized MDI

control on multi-class queueing network. The challenge lies in: 1) The imaginary service

rate control used in the JSR approach needs global information (such as the information

of dominance and bottlenecks) for the preemption, so it cannot be directly applied in the

decentralized setting; 2) If the imaginary switch used in the JSQ-AS approach is applied to

the multi-class network, then it may move a job to the subserver of a di↵erent class with

a di↵erent destination. Thus, JSQ-AS is not suitable for multi-class network. However, we

can still explore more clever approaches than the imaginary service rate control and the

imaginary switch.

One application is the district routing, i.e., assigning routes to connected autonomous

vehicles (CAV) in a district with the objective of minimizing the average travel time of

CAVs. Each CAV has its own origin and destination. Each signal-free intersection can be

viewed as a server. In the internet of vehicles, information (e.g., queueing length) can be

shared among the intersections and vehicles. If there is a routing app or a system operator

that knows the global information and uses it for the feedback control (routing, sequencing,

and holding), we can consider it as a centralized setting. Otherwise, it is a decentralized

setting. The queueing model can be used to simulate the driving environment and boost

the reinforcement learning by replacing SUMO in the training part. This is a joint work

with NYU ECE Highspeed Networking Lab.



Chapter 3

Resilience of Dynamic Routing

with Sensing Faults

This chapter is a joint work with Li Jin. Published in conference version form at

2020 American Control Conference [87] and in report version form published at the NYU

C2SMART Center [43].

Feedback dynamic routing is a commonly used control strategy in transportation sys-

tems. This class of control strategies relies on real-time information about the tra�c state

in each link. However, such information may not always be observable due to temporary

sensing faults. In this chapter, we consider dynamic routing over two parallel links, where

the sensing on each link is subject to recurrent and random faults. The faults occur and

clear according to a finite-state Markov chain. When the sensing is faulty on a link, the

tra�c state on that link appears to be zero to the controller. Building on the theories of

Markov processes and monotone dynamical systems, we derive lower and upper bounds for

the resilience score, i.e., the guaranteed throughput of the network, in the face of sensing

faults by establishing stability conditions for the network. We use these results to study

how a variety of key parameters a↵ect the resilience score of the network. The main con-

clusions are: (i) Sensing faults can reduce throughput and destabilize a nominally stable

network; (ii) A higher failure rate does not necessarily reduce throughput, and there may

exist a worst rate that minimizes throughput; (iii) Higher correlation between the failure

probabilities of two links leads to greater throughput; (iv) A large di↵erence in capacity

between two links can result in a drop in throughput.

25
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3.1 Introduction

The rapidly growing deployment of tra�c sensing and vehicle-to-vehicle/infrastructure

(V2V/ V2I) communications has enabled the concept of intelligent transportation system

(ITS). In ITS, system operators and travelers have access to real-time tra�c conditions

and can thus make better decisions. Dynamic routing is a typical ITS capability, which is

conducted via route guidance tools such as Google Maps and WAZE. System operators can

also influence routing via tolling and instructions for tra�c diversion, which also rely on

real-time tra�c conditions. A major challenge for dynamic routing in ITS is how to ensure

system functionality and e�ciency under a variety of sensing faults. Quality of sensing and

communications significantly a↵ects system performance. However, data health is a serious

issue that system operators must face. On some highways, up to 30%-40% of loop sen-

sors do not report accurate measurements [64, 82]; similar issue exists for camera sensors.

Even though some routing guidance tools may have certain internal fault detection and

correction actions, the benefits of such actions can be further evaluated. Moreover, with-

out appropriate fault-tolerant mechanisms, feedback control algorithms may make decisions

based on wrong information, and ITS may even perform worse than a comparable conven-

tional transportation system. Therefore, ITS will not be well accepted by the public and

transportation authorities unless the impact of sensing faults is adequately evaluated and

addressed. However, such impact has not been well understood, and practically relevant

fault-tolerant routing algorithms have not been developed.

In this chapter, we propose a novel model that synthesizes tra�c flow dynamics and

stochastic sensing faults. Based on this model, we evaluate the impact of faults on fault-

unaware routing algorithm and derive practically relevant insights for designing fault-

tolerant routing algorithms in ITS. We consider the routing problem over two parallel

routes (links), as shown in Fig. 3.1 and Fig. 3.2.

Figure 3.1: Selection over parallel routes

Our approach and results can be extended to more complex networks and a broader class
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of ITS control capabilities, such as ramp metering and speed limit control. We consider

a stochastic model, since in practice it is not easy to deterministically predict when and

where a sensing fault will occur. We show that this model leads to tractable analysis and

insightful results for fault-tolerant design of ITS. We study the stability and guaranteed

throughput of the network, which we consider as the resilience score. We also establish

the link between the resilience score and key model parameters, including the number of

fault-prone links and the average frequency and duration of faults.

Existing model-based tra�c management approaches typically assume complete knowl-

edge of the tra�c condition [13, 32, 65, 90], but feedback tra�c management for ITS in the

face of sensing faults has not been well studied. Como et al. [12] studied the resilience

of distributed routing in the face of physical disruptions to link capacities in a dynamic

flow network. Lygeros et al. [52] proposed a conceptual framework for fault-tolerant tra�c

management, but the concrete algorithms are still yet to be developed. A body of work

on fault-tolerant control has been developed for a class of dynamical systems [7, 62, 93].

However, very limited results are available for recurrent and random faults. In addition,

there exist some results on adaptive/learning-based fault-tolerant control with applications

in electrical/mechanical/aerospace engineering [57,78,92], but these results are not directly

applicable to ITS, nor do they explicitly consider stochastic sensing faults.

Our modeling approach is innovative in that we model the occurrence and clearance of

sensing faults as a finite-state, continuous-time Markov process. If the sensing on a link is

normal, travelers know the true tra�c state (tra�c density) on the link. If the sensing is

faulty, the tra�c state will appear to be zero to the travelers. Besides such denial-of-service,

our modeling approach can also be extended to incorporate other forms of sensing faults,

such as bias and distortion. We adopt the classical logit model [3] for routing; the essential

principle of this model is that more tra�c will go to a less congested link. When the sensing

on a link is faulty, travelers may mistakenly consider a congested link to be uncongested.

We show that such faulty information may a↵ect the network’s throughput. The discrete

states of the Markov process are essentially modes for the flow dynamics, which govern

the evolution of the continuous states. Hence, our model belongs to a class of stochastic

processes called piecewise-deterministic Markov processes [4,17]. Similar models have been

used for demand/capacity fluctuations [42,44]; this chapter extends the modeling approach

to sensing faults.

A key step for resilience analysis is to determine the stability of the tra�c densities

under various combinations of parameters. We study the stability of the network based on

the theory of continuous-time Markov processes [56]. We derive a necessary condition for

stability by constructing a positively invariant set for the dynamic flow network. We derive

a su�cient condition by considering a quadratic, switched Lyapunov function that verifies

the Foster-Lyapunov drift condition. We exploit a special property of the flow dynamics,

called cooperative dynamics [39, 74], to derive an easy-to-check stability criterion, which
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states that the network is stable if there exists a queueing state such that the rate of change

of the fastest growing queue averaged over the modes is negative.

Based on the stability analysis, we analyze the network’s throughput (resilience score).

We define throughput as the maximal inflow that the network can take while maintaining

stable. As a baseline, we first study the behavior of the network if both links have the same

flow functions. We perturb the baseline in multiple dimensions (probability and correlation

of sensing faults on two links) and analyze how throughput can be a↵ected. We also show

that throughput reduces as the two link’s asymmetry increases.

The main contributions of this chapter include (i) a novel stochastic model for sensing

fault-prone transportation networks, (ii) easy-to-check stability conditions for the network,

and (iii) resilience analysis under various settings. The rest of this chapter is organized

as follows. In Section 3.2, we introduce the dynamic flow model with sensing faults. In

Section 3.3, we establish the stability conditions. In Section 3.4, we study the resilience

score under various scenarios. In Section 3.5, we summarize the conclusions and mention

several future directions.
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3.2 Dynamic flow model with sensing faults

Consider the two-link network in Fig. 3.2. Let Uk(t) be the flow into link k 2 {1, 2} and

Xk(t) be the tra�c density of link k at time t. The capacity of link k is Fk 2 [0, 1] where

F1 + F2 = 1. The flow out of link k is fk(Xk(t)), which is specified by the flow function

fk(xk) = Fk(1� e
�xk), k = 1, 2. (3.1)

The source node is subject to a constant demand ⌘ � 0, which is considered as a model

parameter rather than a state or input variable in the subsequent analysis.

Travelers can observe the state X(t). However, the observation is not always accurate.

We consider the sensing on each link to be stochastically switching between a “good” and a

“bad” mode. That is, we consider a set S = {1, 2, 3, 4} of sensing fault modes. The network

switches between the two modes according to the Markov chain in Fig. 3.2. Each mode

Figure 3.2: The two-link network and the Markov chain representing network switches among the sensing
fault modes.

s 2 S is characterized by a fault mapping Ts : R2
�0 ! R2

�0

T1(x) =

"
x1

x2

#
, T2(x) =

"
0

x2

#
, T3(x) =

"
x1

0

#
, T4(x) =

"
0

0

#
. (3.2)

In mode s, the observed state is

x̂ = Ts(x).

At the source node, the demand ⌘ is distributed to each link according to a routing

policy µ : R2
�0 ! R2

�0, which specifies the fraction of inflow that goes to each link according

to the logit model

µk(x) =
e
��x̂k

P2
j=1 e

��x̂j
, k = 1, 2. (3.3)

Note that the routing is based on the observed state rather than the true state.
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For notational convenience, with a slight abuse of notation, we write

µ(s, x) = µ(Ts(x)). (3.4)

That is, the routing policy can be viewed as a switching function µ : S⇥R2
�0 ! [0, 1]2 with

a discrete argument s 2 S and a continuous argument x 2 R2
�0. Finally, we emphasize that

we consider ⌘ as a model parameter rather than a state or input variable in the subsequent

analysis.

Then, we define the dynamics of the hybrid-state process {(S(t), X(t)); t > 0} as follows.

The discrete-state process {S(t); t > 0} of the mode is a time-invariant finite-state Markov

process that is independent of the continuous-state process {X(t); t > 0} of the tra�c

densities. The state space of the finite-state Markov process is S. The transition rate from

mode s to mode s
0 is �s,s0 . Without loss of generality, we assume that �s,s = 0 for all

s 2 S [76]. Hence, the discrete-state process evolves as follows:

Pr{S(t+ �) = s
0|S(t) = s} = �s,s0� + o(�), 8s0 6= s, 8s 2 S.

where � denotes infinitesimal time. We assume that the discrete-state process is ergodic [30]

and admits a unique steady-state probability distribution {ps; s 2 S} satisfying

ps

X

s0 6=s

�s,s0 =
X

s0 6=s

ps0�s0,s, 8s 2 S, (3.5a)

ps � 0, 8s 2 S, (3.5b)
X

s2S
ps = 1. (3.5c)

The continuous-state process {X(t); t > 0} is defined as follows. For any initial condition

S(0) = s and X(0) = x,

d

dt
Xk(t) = ⌘µk

⇣
S(t), X(t)

⌘
� fk

⇣
X(t)

⌘
, t � 0, k = 1, 2. (3.6)

Note that the routing policy µ defined in (3.3)-(3.4) and the flow function f defined in

(3.1) ensure that X(t) is continuous in t. We can define the flow dynamics with a vector

field G : S ⇥ R2
�0 ! R2 as follows:

G(s, x) := ⌘µ(s, x)� f(x). (3.7)

The joint evolution of S(t) and X(t) is in fact a piecewise-deterministic Markov process

and can be described compactly using an infinitesimal generator [4, 17]

Lg(s, x) =
⇣
⌘µ(s, x)� f(x)

⌘T
rxg(s, x) +

X

s02S
�s,s0(g(s

0
, x)� g(s, x)).
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for any di↵erentiable function g.

The network is stable if there exists Z < 1 such that for any initial condition (s, x) 2
S ⇥ R2

�0

lim sup
t!1

1

t

Z t

r=0
E[|X(r)|]dr  Z. (3.8)

This notion of stability follows a classical definition [16], some authors name it as “first-

moment stable” [73]. The rest of this paper is devoted to establishing and analyzing the

relation between the stability of the continuous-state process {X(t); t > 0} and the demand

⌘.
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3.3 Stability analysis

The main result of this section is as follows.

Theorem 3. Consider two parallel links with sensors switching between two modes as de-

fined in section 3.2.

1. A necessary condition for stability is that

⌘

⇣ 1

e��x2 + 1
p2 +

1

2
p4

⌘
 F1, (3.9a)

⌘

⇣ 1

e��x1 + 1
p3 +

1

2
p4

⌘
 F2, (3.9b)

⌘ < 1. (3.9c)

where xk is the solution to

⌘
e
��xk

1 + e��xk
= Fk(1� e

�xk)

for k = 1, 2.

2. A su�cient condition for stability is that there exists ✓ 2 R2
�0 such that

4X

s=1

ps max
k2{1,2}

n
⌘

e
��Ts,k(✓k)

e
��Ts,k(✓2) + e

��Ts,k(✓1)
� Fk(1� e

�✓k)
o
< 0 (3.10)

The rest of this section is devoted to the proof of the above result.

3.3.1 Proof of necessary condition

An apparent necessary condition for stability is

⌘ < 1. (3.11)

If this does not hold, then the network is unstable even in the absence of sensing faults [41].

First, an invariant set of the process {X(t); t > 0} is M = [x1,1) ⇥ [x2,1). To see

this, note that for any s 2 S and for any (x1, x2) such that (x1, x2) /2M, the vector G of

time derivatives of the tra�c densities has a non-zero component that points to the interior

of the invariant set M; see Figure 3.3.

Second, by ergodicity of the process {(S(t), X(t)); t > 0} where X(t) =

"
X1(t)

X2(t)

#
, we

have for k 2 {1, 2},

Xk(t) = Xk(0) +

Z t

0

⇣
uk(⌧)� fk(⌧)

⌘
d⌧,
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Figure 3.3: Illustration of the continuous state process and the invariant set M. The arrows represent the
vector field G defined in (3.7) for the four states.

where uk(⌧) and fk(⌧) are inflow and outflow of link k at time ⌧ . Since limt!1
1
tXk(0) = 0

and limt!1
1
tXk(t) = 0 a.s., then

0 = lim
t!1

1

t

 Z t

0

⇣
uk(⌧)� fk(⌧)

⌘
d⌧ +Xk(0)�Xk(t)

!
= lim

t!1

1

t

Z t

0

⇣
uk(⌧)� fk(⌧)

⌘
d⌧ a.s.

Note that fk(⌧)  Fk for any ⌧ � 0 and k 2 {1, 2}, hence

lim
t!1

1

t

Z t

0
uk(⌧)d⌧ = lim

t!1

1

t

Z t

0
fk(⌧)d⌧  lim

t!1

1

t

Z t

0
Fkd⌧ = Fk. (3.12)

According to the definition of steady-state probability,

lim
t!1

1

t

Z t

0
IS(⌧)=sd⌧ = ps, a.s. 8s 2 S.
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Combining with (3.12), we obtain

F1 � lim
t!1

1

t

Z t

0
u1(⌧)d⌧ = lim

t!1

1

t

Z t

0
⌘µ1(S(⌧), X(⌧))d⌧

=⌘ lim
t!1

1

t

4X

s=1

Z t

0
IS(⌧)=sµ1(S(⌧), X(⌧))d⌧

�⌘ lim
t!1

1

t

⇣Z t

0
IS(⌧)=10d⌧ +

Z t

0
IS(⌧)=2

1

1 + e
��x2

d⌧ +

Z t

0
IS(⌧)=30d⌧ +

Z t

0
IS(⌧)=4

1

2
d⌧

⌘

=⌘

⇣ 1

1 + e
��x2

lim
t!1

1

t

Z t

0
IS(⌧)=2d⌧ +

1

2
lim
t!1

1

t

Z t

0
IS(⌧)=4d⌧

⌘

=⌘

⇣
p2

1 + e
��x2

+
p4

2

⌘
,

which gives (3.9a). We can prove (3.9b) in a similar way.

3.3.2 Proof of su�cient condition

Suppose that there exists a vector ✓ 2 R2
�0 satisfying (3.10). Then, for the hybrid

process {(S(t), X(t)); t > 0}, consider the Lyapunov function

V (s, x) =
1

2

⇣
(x1 � ✓1)+ + (x2 � ✓2)+

⌘2
+ as

⇣
(x1 � ✓1)+ + (x2 � ✓2)+

⌘
(3.13)

where (xk � ✓k)+ = max{0, xk � ✓k}, k = 1, 2, and the coe�cients as are given by

[a1, a2, a3, a4]
T =

2

666664

�
P
i 6=1

�1i �12 �13 �14

�21 �
P
i 6=2

�2i �23 �24

�31 �32 �
P
i 6=3

�3i �34

1 0 0 0

3

777775

�1 2

664

Ḡ�G(1, ✓)

Ḡ�G(2, ✓)

Ḡ�G(3, ✓)

1

3

775

where G is defined in (3.7) and Ḡ =
P

s2S psG(s, ✓). Based on the ergodicity assumption

of the mode switching process, the matrix in the above must be invertible. This Lyapunov

function is valid in that V (s, x)!1 as |x|!1 for all s. Define

Ds = max
k2{1,2}

⇣
µk(s, ✓)� fk(✓k)

⌘
, s 2 S. (3.14)

The Lyapunov function V essentially penalizes the quantity (x � ✓)+, which can be

viewed as a “derived state”. Apparently, boundedness of X(t) is equivalent to the bound-

edness of (X(t)�✓)+ Note that the dynamic equation of the derived state (x�✓)+ is slightly
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di↵erent from that of x:

d

dt
(Xk(t)� ✓k)+ = Dk(S(t), X(t)) :=

8
>>><

>>>:

µk(S(t), X(t))� fk(X(t) Xk(t) > ✓k,

(µk(S(t), X(t))� fk(X(t))+ Xk(t) = ✓k,

0 otherwise,

k = 1, 2.

Applying the infinitesimal generator to the Lyapunov function, we obtain

LV (s, x) =
2X

k=1

2X

j=1

Dj(s, x)(xk � ✓k)+ +
X

s0 6=s

⇣
�s,s0(as0 � as)

2X

k=1

(xk � ✓k)+
⌘
+

2X

k=1

as,kDk(s, x)

=
⇣ 2X

k=1

Dk(s, x) +
X

s0 6=s

�s,s0(as0 � as)
⌘
|(xk � ✓k)+|+

2X

k=1

as,kDk(s, x) (3.15)

This proof establishes the stability of the process {(S(t), X(t)); t > 0} by verifying that

the Lyapunov function V as defined above satisfies the Foster-Lyapunov drift condition for

stability [56]:

LV (s, x)  �c|x|+d 8(s, x) 2 S ⇥ R2
�0 (3.16)

for some c > 0 and d < 1, where |x| is the one-norm of x; this condition will imply (3.8).

To proceed, we partition R2
�0, the space of x, into two subsets:

X0 = {x : 0  x  ✓}, X1 = XC
0 ;

that is, X0 and X1 are the complement to each other in the space R2
�0. In the rest of this

proof, we first verify (3.16) over X0 and then over X1.

To verify (3.16) over X0, note that µ and f are bounded functions, so, for any as,k, there

exists d <1 such that

d1 � as

2X

k=1

Dk(s, x) 8(s, x) 2 S ⇥ R2
�0. (3.17)

In addition, (xk � ✓k)+ = 0, k = 1, 2, . . . ,K for all x 2 X0; this and (3.15) imply

LV (s, x)  d1. (3.18)

Furthermore, for any c > 0, there exists d2 = c|✓| such that d2 � c|x| for all x 2 X0. Hence,

letting d = d1 + d2, we have

LV (s, x)  �c|x|+d 8(s, x) 2 S ⇥ X0. (3.19)
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To verify (3.16) over X1, we further decompose X1 into the following subsets:

X 1
1 = {x 2 X1 : x1 � ✓1, x2 < ✓2},

X 2
1 = {x 2 X1 : x1 < ✓1, x2 � ✓2},

X 3
1 = {x 2 X1 : x1 � ✓1, x2 � ✓2}.

For each x 2 X 1
1 , we have

LV (s, x) =
⇣
D1(s, x) +

X

s0 6=s

�s,s0(as0 � as)
⌘
|(x� ✓)+|+as

2X

k=1

Dk(s, x)


 ⇣

µ1(s, x)� f1(x1)
⌘
+
X

s0 6=s

�s,s0(as0 � as)

!
|(x� ✓)+|+d1


⇣
Ds +

X

s0 6=s

�s,s0(as0 � as)
⌘
|(x� ✓)+|+d1 (3.20)

From the definition of as, we have

Ds +
X

s0 6=s

�s,s0(as0 � as) =
1

4

X

s02S
ps0Ds0

The above and (3.20) imply

LV (s, x)  1

4

 
X

s02S
ps0Ds0

!
|x|+d, x 2 X 1

1 .

Let c := �1
4

P
s02S ps0Ds0 . From (3.10), we have c > 0. Hence, we have

LV (s, x)  �c|x|+d, 8(s, x) 2 X 1
1 .

Analogously, we can show

LV (s, x)  �c|x|+d, 8(s, x) 2 X 2
1 [ X 3

1 ,

and hence

LV (s, x)  �c|x|+d, 8(s, x) 2 X1,

The above and (3.19) imply the drift condition (3.16), which completes the proof.
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3.4 Resilience analysis

In this section, we study the resilience score, i.e. the guaranteed throughput (the supre-

mum of ⌘ that maintains stability), under various scenarios. We first consider two symmetric

links and focus on the impact of transition rates of the discrete state (Section 3.4.1). Then,

we study how the throughput varies with the asymmetry of the links (Section 3.4.2).

3.4.1 Impact of transition rates

If the two links are homogeneous in the sense that they have same flow functions f1 = f2,

we have the main result of this section as follows:

Proposition 2. For the homogeneous network, the resilience score ⌘
⇤, i.e. the guaranteed

throughput has a lower bound of

⌘
⇤ � 1

1 + p2 + p3
. (3.21)

Proof : The lower bound results from the su�cient condition in Theorem 3.

The homogeneity implies that F1 = F2 = 1/2 and ✓1 = ✓2. Now (3.10) means that there

exists ✓1 2 R�0 such that

⇣1
2
(p1 + p4) +

1

1 + e��✓1
(p2 + p3)

⌘
⌘ <

1

2
(1� e

�✓1),

that is,

⇣
1 +

1� e
��✓1

1 + e��✓1
(p2 + p3)

⌘
⌘ < 1� e

�✓1 . (3.22)

Let z = e
�✓1 2 (0, 1], then (3.22) can be expressed as there exists z 2 (0, 1] such that

⇣
1 +

1� z
�

1 + z�
(p2 + p3)

⌘
⌘ < 1� z,

that is,

z
�+1 �

⇣
1� (1� p2 � p3)⌘

⌘
z
� + z �

⇣
1� (1 + p2 + p3)⌘

⌘
< 0. (3.23)

Let g(z) be the left-hand side of (3.23). Since g(z) is monotonically increasing on (0,1]

(proof is provided in Appendices), ⌘ should satisfy

g(0) = (1 + p2 + p3)⌘ � 1 < 0,

or

⌘ <
1

1 + p2 + p3
,
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which gives the lower bound.

⇤

Table 3.1: Nominal model parameters.

Parameter Notation Nominal value

Link 1 capacity F1 0.5
Link 2 capacity F2 0.5
Routing sensitivity to congestion � 1

Next, we discuss how characteristics of link failures (specifically, link failure rate and link

failure correlation) a↵ect the resilience score. Table 3.1 lists the nominal values considered

in this subsection.

Link failure rate: Suppose that the health of each link is independent of the other link.

Furthermore, suppose that the failure rates of both links are identical, denoted as p, then

p2 + p4 = p = p3 + p4,

⌘
⇤ =

1

1 + p2 + p3
=

1

1 + 2p(1� p)
.

When the link failure rate is either 0 or 1, the two-link network becomes open-loop, the

lower bound can naturally be 1. The lower bound reaches minimum when the link failure

rate is 0.5; see Figure 3.4.

Link failure correlation: Suppose that the health of each link is correlated with the other

link while the failure rates of both links are still identical. Denote the correlation as ⇢, then

⇢ =
p4 � (p2 + p4)(p3 + p4)p

p2p3
=

p� p2 � p
2

p
,

⌘
⇤ =

1

1 + p2 + p3
=

1

1 + 2p(1� p� ⇢)
.

As the link failure correlation increases from �p to 1 � p, the lower bound increases from
1

1+2p to 1. When the failure of the two links are strongly (positively) correlated, the two-link

network also turns to be open-loop and hence the lower bound reaches 1; see Figure 3.4.
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Figure 3.4: Impact of link failure probability (⇢ = 0) and link failure correlation (p = 0.5) on the lower
bound of resilience score
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3.4.2 Impact of heterogeneous link capacities

Now we relax the assumption of symmetric links and allow F1 6= F2. Without loss of

generality, we assume that F1 � F2. Instead, we will consider symmetric failure rate, i.e.

p2 = p3. The following result links the resilience score to |F1 � F2|, which quantifies the

asymmetry of links:

Proposition 3. Suppose that p2 = p3 and F1 � F2. Then, the resilience score has a lower

bound of

⌘
⇤ � min

n1� (F1 � F2)

1� p1
,
1� p4(F1 � F2)

1 + 2p2

o
. (3.24)

Proof : Let y = e
�✓1 , z = e

�✓2 , ⇢ = y��z�

y�+z�
. (3.10) implies that there exists y, z 2 (0, 1]

such that

p1max
n

⌘y
�

y� + z�
� F1(1� y),

⌘z
�

y� + z�
� F2(1� z)

o

+p2max
n

⌘

1 + z�
� F1(1� y),

⌘z
�

1 + z�
� F2(1� z)

o

+p3max
n

⌘y
�

y� + 1
� F1(1� y),

⌘

y� + 1
� F2(1� z)

o

+p4max
n
⌘

2
� F1(1� y),

⌘

2
� F2(1� z)

o
 0 (3.25)

If 1
2�p1

< F1 � F2  1, when

⌘  1� (F1 � F2)

1� p1
,

there exists y  1� ⌘+F2
F1

such that (3.25) holds.

If 0  F1 � F2  1
2�p1

, when

F1 � F2  ⌘  1� (1� p1 � 2p2)(F1 � F2)

1 + 2p2
,

there exists y, z satisfying ⇢(F1 � F2) � F1(1� y)� F2(1� z) � 0 and ⇢ <
F1�F2

⌘ such that

(3.25) holds and when

⌘ < F1 � F2,

there exists y  1� ⌘+F2
F1

such that (3.25) holds.

Therefore,

⌘
⇤ �

8
<

:

1�(F1�F2)
1�p1

,
1

2�p1
< F1 � F2  1

1�(1�p1�2p2)(F1�F2)
1+2p2

, 0  F1 � F2  1
2�p1

The details of the proof are provided in Appendices.
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⇤
Now we are ready to discuss how link capacity di↵erence a↵ects the resilience score.

When F1 = F2, the lower bound is 1
1+2p2

, in consistence with our lower bound in

subsection 3.4.1, and the upper bound is 1 (note that when
p
2max{p2, p3} + p4  1, we

can derive

⌘ < 1

from the necessary condition).

As F1 � F2 increases, the lower bound gradually drops and after certain point, it drops

faster to 0 while the upper bound remains 1 for a while and then drops to 0. It means that

when the di↵erence between two link capacities gets larger, one link starts getting more

congested than the other, then the system can be less stable.

When F1 ! 1, F2 ! 0, the network has weak resilience to the sensing faults and the

resilience score tends to be zero.
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Figure 3.5: Impact of link capacity di↵erence on the lower and upper bound of resilience score
(p1 = p2 = p3 = p4 = 1/4)
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3.5 Concluding remarks

In this chapter, we propose a two-link dynamic flow model with sensing faults to study

the stability conditions and guaranteed throughput of the network. Based on this model,

we are able to derive lower and upper bounds of the resilience score and analyze the impact

of transition rates and heterogeneous link capacities on them.

This work can be extended in several directions [79]. First, we can consider a more

general network, say single-origin-single-destination acyclic network with a time-invariant

inflow at the origin, rather than a simple two parallel link network. Second, various forms of

flow functions that are relevant to di↵erent applications including road tra�c, production

line, and data packets can be assumed in the model. Third, the logit model (dynamic

routing) can be replaced with other control laws such as ramp metering and max-pressure

control. Last, several types of fault modes that capture cyber-physical disruptions (e.g.

accidents are physical disruptions) can also be discussed.

The results can be validated using real-world highway tra�c data. For example, we

can conduct a simulation of sensing faults and feedback ramp control for tra�c flow on

Interstate I210 near Los Angeles using PeMS data [40].

This work also provides an implementable approach to designing resilient smart highway

systems with fault-tolerant tra�c control. Specific use cases include route guidance and

ramp control.
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Appendices

The monotonicity of g(z) in subsection 3.4.1

The first derivative and the second derivative of g(z) are

g
0(z) = (� + 1)z� �

⇣
1� (1� p2 � p3)⌘

⌘
�z

��1 + 1,

g
00(z) = �z

��2
h(z),

where h(z) = (� + 1)z �
⇣
1� (1� p2 � p3)⌘

⌘
(� � 1).

If 0 < �  1, then h(z) > h(0) =
⇣
1�(1�p2�p3)⌘

⌘
(1��) � 0, g00(z) = �z

��2
h(z) > 0.

Hence g
0(z) is monotonically increasing on (0,1]. Since g

0(z) > g
0(0) = 1, g(z) is also

monotonically increasing on (0,1].

If � > 1, let z0 =
⇣
1 � (1 � p2 � p3)⌘)

⌘
��1
�+1 , then h(z) < 0 on (0, z0) and h(z) > 0

on (z0, 1]. Since g
00(z) has same sign as h(z), g0(z) � g

0(z0) = 1 > 0. Therefore, g(z) is

monotonically increasing on (0,1].

Detailed proof of Proposition 3

If 1
2�p1

< F1 � F2  1, then assume

⌘  1� (F1 � F2)

1� p1
,

let y  1� ⌘+F2
F1

(note that ⌘  1�(F1�F2)
1�p1

< F1 � F2 means y exists), we have

⌘(1� z
�)

1 + z�
< ⌘  F1(1� y)� F2 < F1(1� y)� F2(1� z).

Now (3.25) can be expressed as

p1

⇣
⌘z

�

y� + z�
� F2(1� z)

⌘
+ p2

⇣
⌘z

�

1 + z�
� F2(1� z)

⌘
+

p3

⇣
⌘

y� + 1
� F2(1� z)

⌘
+ p4

⇣
⌘

2
� F2(1� z)

⌘
 0, (3.26)

that is,

1

2

⇣
1� y

� � z
�

y� + z�
p1 + (

1� y
�

1 + y�
� 1� z

�

1 + z�
)p2
⌘
⌘ � F2(1� z)  0.
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Fix y and note that when z = 0,

LHS =
1

2

⇣
1� p1 �

2y�

1 + y�

⌘
⌘ � F2

<
1

2
(1� p1)⌘ � F2

=
1

2
� 1

2
(F1 � F2)� F2

= 0,

then intermediate value theorem implies that there exists z such that LHS  0.

If 0  F1 � F2  1
2�p1

, first assume

F1 � F2  ⌘  1� (1� p1 � 2p2)(F1 � F2)

1 + 2p2
,

let y, z satisfies ⇢(F1 � F2) � F1(1 � y) � F2(1 � z) (fix y and note that when z = 0,

⇢(F1 � F2) + F2(1 � z) = (F1 � F2) + F2 = F1 > F1(1 � y), intermediate value theorem

implies that such z exists) and F1(1 � y) � F2(1 � z) � 0 (let y  1 � F2
F1
(1 � z)) and

⇢ <
F1�F2

⌘ (since F1�F2
⌘  1, such ⇢ exists), we have

⇢⌘ � ⇢(F1 � F2) � F1(1� y)� F2(1� z).

Now (3.25) can be expressed as

p1

⇣
⌘y

�

y� + z�
� F1(1� y)

⌘
+ p2

⇣
⌘

1 + z�
� F1(1� y)

⌘
+

p3

⇣
⌘

y� + 1
� F2(1� z)

⌘
+ p4

⇣
⌘

2
� F2(1� z)

⌘
 0,

that is,

1

2

⇣
1 + ⇢p1 + (

1� z
�

1 + z�
+

1� y
�

1 + y�
)p2
⌘
⌘ � (p1 + p2)F1(1� y)� (1� p1 � p2)F2(1� z)  0.

Fix ⇢ and note that when z = 0 (and hence y = 0),

LHS =
1

2
⇢⌘p1 +

1

2
(1 + 2p2)⌘ � (p1 + p2)(F1 � F2)� F2

<
1

2
(F1 � F2)p1 +

1

2

⇣
1� (1� p1 � 2p2)(F1 � F2)

⌘
� (p1 + p2)(F1 � F2)� F2

=0,

then intermediate value theorem implies that there exists z (and y) such that LHS  0.

Next assume ⌘ < F1�F2, let y  1� ⌘+F2
F1

(note that ⌘ < F1�F2 means such y exists),

thus (3.25) can also be expressed as (3.26). Note that ⌘ < F1�F2  1�(F1�F2)
1�p1

, we can use
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similar proof as the case 1
2�p1

< F1 � F2  1.



Chapter 4

Strategic Defense against

Reliability and Security Failures

This chapter is a joint work with Li Jin. To be submitted to IEEE Transactions on

automatic Control [89].

This chapter aims to study the strategies and resilience of dynamic routing for intel-

ligent transportation system and other engineering systems such as production lines and

communication networks. Such network systems rely on connected sensing and actuating

devices for computation, communication, and coordination. However, the lack of secure-

by-design features makes them susceptible to random sensing faults and malicious spoofing

attacks. This motivates the design of feedback control strategies that are both cost-e�cient

and reliable under such reliability and security failures. We consider a parallel multi-server

queuing system and model it as a Markovian decision process. A system operator protects

the routing guidance for incoming jobs dynamically based on the system status (queue

lengths). We find out that the optimal decisions of the operator are threshold-based. While

in the security setting, we extend the model to an attacker-defender game. The attacker

manipulates the routing guidance so that the jobs are wrongly allocated to servers. Both

attacking and defending induce technological costs. Hence, each player has to balance the

technological cost and queuing cost. The equilibria regimes and the best responses also

have threshold-based properties. For both settings, we study the dynamics and derive the

su�cient stability conditions of the queuing system. Besides theoretical insights, we also

present solution algorithms and numerical analysis that can support practical applications.

45
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4.1 Introduction

The operation of a feedback-controlled network system relies heavily on data collection

and transmission that are vulnerable to random malfunctions and malicious attacks. For

example, in the internet of vehicles, researchers have found that tra�c sensors and tra�c

lights can be easily intruded and manipulated [11, 31]; wired/wireless communication be-

tween connected vehicles are also in the threat of various forms of attacks [1, 67]. Similar

security risks also exist in production lines [49] and communication networks [18]. However,

such security risks have not been well studied in conjunction with the dynamics of network

systems, which is typically modeled as queueing processes. Moreover, since the vulnerable

sensing and actuating components are physically distributed, it is hard to predict when a

component will be attacked, and which component will be attacked. It can be seen that it

is economically infeasible and technically unnecessary to completely prevent reliability and

security failures. Yet, it is crucial to understand the risk levels under the two scenarios and

to design strategic defense mechanisms for the queueing system.

In this chapter, we develop novel models and methods to evaluate the reliability/security

risks of dynamic routing and to design an e�cient deployment of protecting/defending re-

sources. We consider a system of parallel servers and queues with dynamic routing subject

to faults due to random malfunctions or malicious attacks. The system operator (de-

fender) protects the routing guidance for incoming jobs dynamically based on the system

status (queue lengths). The attacker manipulates the routing guidance so that the jobs are

wrongly allocated to servers. Attacking and defending both induce technological costs, so

the defender has to balance the technological cost and queueing cost. Our goal is to quantify

the e�ciency loss (in terms of queueing delays) due to such failures and design cost-e�cient

feedback control strategies. We characterize the structures of the defending strategies and

develop algorithms that e�ciently compute the strategies. We also demonstrate our ap-

proach via a series of computational examples. The proposed methods are relevant to the

resilient design of intelligent transportation systems, production lines, and communication

networks.

Specifically, we consider a homogeneous Poisson arrival process of jobs and n parallel

exponential servers with identical service rates. If both sensing and actuating are normal,

the system operator allocates incoming jobs to the shortest queue; if the queues are equal,

the job is routed randomly to each server with equal or non-equal probabilities. We focus

on two scenarios of failures:

1. Reliability: The routing is faulty with a constant probability. When a fault occurs,

a job is randomly allocated to one of the n servers; otherwise the job is allocated

to the shortest queue. The system operator deploys security resources to control the

probability of faults. Deploying security resources induces a technological cost on the

defender, and the cost is identical for all jobs. The defender aims to balance the
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e�ciency loss due to the faults and the technological cost to deploy security resource.

2. Security: A malicious attacker is able to modify the routing instruction with a ran-

domly generated one. The defender is able to defend individual jobs to ensure correct

routing. Both attack and defense induce technological costs. The attacker’s (resp.

defender’s) decision is the probability of attacking (resp. defending) the routing of

each customer. The attacker (resp. defender) is interested in balancing the long-time-

average network-wide queueing cost minus the attacking cost (resp. plus the defending

cost). We assume that both players use Markovian strategies; i.e. the probabilities of

attacking and defending only depend on the state of the queueing system.

Numerous results have been developed for parallel queueing systems without sensing/

actuating faults [21,23,26,27,36,37,59]. Although some of these results provide hints for our

problem, they do not directly apply to the setting with failures. Parallel queueing systems

have been studied with delayed [47], erroneous [6], or decentralized information [60], which

provides insights for our purpose. Previous work typically relies on characterization or

approximation of the steady-state distribution of the queueing state; however, this analysis

approach is hard to be synthesized with reliability failure and security game models. In

addition, it is hard to study the steady-state distribution of queueing systems with state-

dependent transition rates.

To address this challenge, we use a Lyapunov function-based approach to study the

stability (i.e. boundedness) of the queueing system and to obtain upper bounds for the

mean number of jobs in the system. This approach has been applied to queueing systems in

settings di↵erent from that in this chapter [16,22,46]. Importantly, we use this approach to

study the queueing dynamics under state-dependent defending strategies. Using an upper

bound for queueing cost derived from the Foster-Lyapunov criterion [56], we formulate a de-

sign problem for security resource deployment. We also formulate a dynamic programming

(DP) to compute the optimal defending strategy. Using a numerical example, we show that

the DP algorithm gives a solution that is consistent with our theoretical conclusion.

Next, we characterize the equilibria of the attacker-defender game. Game theory is a

powerful tool for security risks analysis that has been extensively used in various engineering

systems [24, 53, 85]. Game theoretic approaches have been applied to studying security of

routing in transportation [48, 86] and communications [8, 34]. However, to the best of our

knowledge, the security risk of feedback routing policies has not been well studied from a

perspective combining game theory and queueing theory, which is essential for capturing

the interaction between the queueing dynamics and the players’ decisions. For open-loop

attacking and defending strategies, we quantitatively characterize the security risk (in terms

of attack-induced queueing delay and technological cost for defense) in various scenarios.

We show that the game has multiple regimes for equilibria dependent on the technological

costs of attacking and of defending as well as the demand. A key finding is that the attacker

would either attack no jobs or attack all jobs. When the attacking cost is high, the attacker
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may have no incentive to attack any jobs; consequently, the defender does not need to defend

any jobs. When the attacking cost is low, the attacker will attack every job; in this case,

the defender’s behavior will depend on the defending cost. The regimes also depend on the

arrival rate of jobs: for higher arrival rates, the attacker has a higher incentive to attack, and

the defender has a higher incentive to defend. For closed-loop strategies, we again use the

Lyapunov function-based approach to derive an upper bound for the queueing cost resulting

from the attacker-defender game. In particular, we show that the defender has a higher

incentive to defend if the di↵erence between the longest and the shortest queues is larger.

We also develop an algorithm that computes the equilibria of the game and quantifies the

security risk.
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4.2 Parallel queueing system and failure models

4.2.1 Queueing model

Consider a parallel queueing system. Jobs arrive according to a Poisson process of rate �.

Each server serves jobs at an exponential rate of µ. We useX(t) =
h
X1(t) X2(t) · · · Xn(t)

iT

to denote the number of jobs, either waiting or being served, in the n servers, respectively.

The state space of the parallel queueing system is Zn
�0.

Without any failures, any incoming job is allocated to the shortest queue. If there are

multiple shortest queues, then the job is randomly allocated to one of them with equal

probabilities.

4.2.2 Reliability failures

Suppose that when a job arrives at the system, its allocation is correct with probability

(1� a) and is faulty with probability a 2 [0, 1]. If the allocation is correct, the job joins the

shortest queue. If the allocation is faulty, then the job joins a random queue; the probability

of joining the ith queue is pi where
nP

i=1
pi = 1. Fig. 4.1 illustrates the routing in the presence

of reliability failures.
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!2(#)
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μ

pn

⋮

Figure 4.1: A n-queue system with shorter-queue routing under reliability failures.

The system operator can deploy additional resources to ensure correct routing. The

probability of protecting is a state-dependent Markovian policy � : Zn
�0 ! [0, 1], which

is selected by the system operator. Protecting a job induces a one-time cost of cb on the

system operator.

The objective of the system operator is to balance the queueing cost and the protecting

cost. We formulate this problem as an infinite-horizon continuous-time Markov decision

process.

The system operator aims to minimize the expected cumulative discounted cost J(x):

J
⇤(x) = min

�
J(x,�) = min

�
E
h Z 1

0
e
�⇢t

C(X(t))dt
���X(0) = x

i
,
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where ⇢ is the discounted factor and C : Zn
�0 ! R is the immediate cost defined as

C(⇠) = |⇠|+cb�(⇠).

4.2.3 Security failures

Suppose that a malicious attacker is able to compromise the system operator (defender)’s

dynamic routing. When a job arrives and is being allocated, the attacker is able to modify

the instruction sent by the operator so that the job is mistakenly allocated to a non-shortest

queue. If the attacker attacks, she needs to select the queue that the job joins. Since we only

consider Markovian strategies, it is apparent that the attacker’s best action is to allocate

the job to the longest queue. Attacks have no impact when the queues are equal. Each job

is attacked with a state-dependent probability ↵ : Zn
�0 ! [0, 1], where ↵(x) is selected by

the attacker. Fig. 4.2 illustrates the routing in the presence of reliability failures.

λ
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Xn(t)

Server 1
Attacker

!

Server n 

μ

μDefender

"

S

F

1-!(1-")

!(1-")

X2(t)

Server 2

μ
⋮

$1(&) = min, $"(&)

$#(&) = max, $"(&)

Figure 4.2: A n-queue system with shorter-queue routing under security failures.

The defender model is essentially the same as that in the reliability setting. The only

di↵erence is that in the security setting, the defender knows that she is playing a security

game with the strategic attacker.

We formulate the interaction between the attacker and the defender as an infinite-horizon

stochastic game with Markovian strategies.

The attacker aims to maximize the expected cumulative discounted reward V (x,↵,�)

given the defender’s Markovian strategy �:

V
⇤
A(x,�) = max

↵
V (x,↵,�) = max

↵
E
h Z 1

0
e
�⇢t

R(X(t))dt
���X(0) = x

i
,

where R : Zn
�0 ! R is the immediate reward defined as

R(⇠) = |⇠|+cb�(⇠)� ca↵(⇠).

Similarly, the defender aims to minimize the expected cumulative discounted loss given
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the attacker’s Markovian strategy ↵:

V
⇤
B(x,↵) = min

�
V (x,↵,�).
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4.3 Protection against random faults

In this section, we consider the design of the system operator’s state-dependent protect-

ing policy from two aspects: stability and optimality.

It is well known that a parallel n-queue system is stable if and only if the demand is

less than the total capacity, i.e. � < nµ. In the following result, we will see that random

faults can destabilize the system.

Proposition 4. The unprotected n-queue system with faulty probability a is stable if and

only if

� < nµ, (4.1a)

apmax� < µ. (4.1b)

Furthermore, when the system is stable, the number of jobs is upper-bounded by

X̄ := lim sup
t!1

tX

s=0

E[f(X(s))]  �+ nµ

2
⇣
µ�max(apmax, 1/n)�

⌘ . (4.2)

Now consider the n-queue system under protecting policy. We say that the n-queue

system is stabilizable if a stabilizing policy exists.

Theorem 4. Consider the n-queue system subject to faults. The routing of a job is faulty

with probability a. The system operator protects each job with a state-dependent probability

� : Zn
�0 ! [0, 1]. Then, a stabilizable n-queue system is stable if for any x 2 Zn

�0 such that

x is not a diagonal vector, we have

�(x) > 1� µ|x|��xmin

a�

⇣ nP
i=1

pixi � xmin

⌘ , (4.3)

where xmin = mini xi and |x|=
Pn

i=1 xi. Furthermore, under the above condition, the

number of jobs is upper-bounded by

X̄  �+ nµ

2c
, (4.4)

where c = min
x�0

{µ� �xmin/|x|�a(1� �(x))�(
Pn

i=1 pixi � xmin)/|x|}.

Next, we study the structure of the optimal defending policy for the dynamic routing

problem.

The Hamiltonian-Jacobi-Bellman equation (derived from Kolmogorov equation) of the

dynamic programming can be written as [10]

0 = min
�

{|x|+cb�(x)� ⇢J
⇤(x) + L�

J
⇤(x)},
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Figure 4.3: The characterization of the threshold of the stabilizing protecting policy for a two-queue
system.

where L� is the infinitesimal generator under control policy �. That is,

(⇢+ �+ nµ)J⇤(x) =min
�

n
|x|+cb�(x) + µ

X

i

J
⇤((x� ei)

+) + �min
j

J
⇤(x+ ej)

+ (1� �(x))a�
⇣X

i

piJ
⇤(x+ ei)�min

j
J
⇤(x+ ej)

⌘o
(4.5)

Here +(�)ei means adding (subtracting) 1 from i-th element.

Definition 5. The optimal defending policy is defined as

�
⇤ = argmin

�
J(x,�).

Remark 4. When a = 0, �⇤ ⌘ 0 and when x1 = x2 = · · · = xn, �⇤(x) = 0.

Lemma 6. The optimal defending policy is bang-bang, taking �
⇤(x) = 0 or �

⇤(x) = 1.

Proof. The expression to be minimized in the right-hand side of (4.5) is linear in �(x), so

the minimum is reached at the endpoints, that is, 0 or 1.

Therefore, the defending policy is deterministic at each state x, either defend (b = 1) or

not to defend (b = 0). Now the HJB equation turns into

(⇢+ �+ nµ)J⇤(x) = min
b2{0,1}

n
|x|+cbb+ µ

X

i

J
⇤((x� ei)

+) + �min
j

J
⇤(x+ ej)

+ (1� b)a�
⇣X

i

piJ
⇤(x+ ei)�min

j
J
⇤(x+ ej)

⌘o

def
= min

b2{0,1}

n
c(x, b) +

X

x0

q(x0|x, b)J⇤(x0)
o
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Using the uniformization trick [51,63], we have

J
⇤(x)

def
= min

b

n
c̃(x, b) + �

X

x0

p(x0|x, b)J⇤(x0)
o
, (4.6)

where ⇤ = � + nµ, � = ⇤/(⇢ + ⇤), c̃(x, b) = c(x, b)/(⇢ + ⇤) and p(x0|x, b) = q(x0|x, b)/⇤.
Without loss of generality, we assume ⇢+ ⇤ = 1 in the following.

We can set up a value iteration form of the HJB equation as

J
(k+1)(x) = min

b

n
c̃(x, b) + �

X

x0

p(x0|x, b)J (k)(x0)
o
. (4.7)

The main theorem of this section is given below.

Theorem 5. The optimal defending policy �
⇤ : Zn

�0 ! [0, 1] is a threshold policy character-

ized by n non-intersecting monotonically non-decreasing threshold functions. Specifically, in

each polyhedron Xm = {x 2 Zn
�0 | xi � xm, 81  i  n} (m = 1, 2, · · · , n), �⇤(x) is mono-

tonically non-decreasing in xi (i 6= m) when other variables are fixed and monotonically

non-increasing in xm when other variables are fixed. See Figure 4.4.

Figure 4.4: The characterization of the optimal protecting policy for a two-queue system.

Based on Theorem 5, the key findings are: the defender is more likely to defend when

(1) the queue lengths are ”unbalanced”; (2) queues are close to empty.

4.3.1 Proof of stability criteria

Consider the quadratic Lyapunov function

W (x) =
1

2

nX

i=1

x
2
i .
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For the unprotected case, by applying infinitesimal generator, we have

LW (x) =a�
1

2

nX

i=1

pi

⇣
(xi + 1)2 � x

2
i

⌘
+ (1� a)�

1

2

⇣
(xmin + 1)2 � x

2
min

⌘

+ µ
1

2

nX

i=1

Ixi>0

⇣
(xi � 1)2 � x

2
i

⌘

=a�

nX

i=1

pixi + (1� a)�xmin � µ

nX

i=1

xi +
1

2
�+

1

2

nX

i=1

Ixi>0µ.

Note that

LW (x) 
⇣
max(apmax, 1/n)�� µ

⌘
|x|+1

2
(�+ nµ).

Hence, by (4.1a)–(4.1b) there exists a constant c = µ � max(apmax, 1/n)� > 0 and d =
1
2(�+ nµ) such that

LW (x)  �c|x|+d, 8x 2 Zn
�0.

By [56, Theorem 4.3], the above implies (4.2) and thus stability.

For the protected case, by applying infinitesimal generator, we have

LW (x) =a(1� �(x))�
1

2

nX

i=1

pi

⇣
(xi + 1)2 � x

2
i

⌘
+
⇣
1� a(1� �(x))

⌘
�
1

2

⇣
(xmin + 1)2 � x

2
min

⌘

+ µ
1

2

nX

i=1

Ixi>0

⇣
(xi � 1)2 � x

2
i

⌘

=a(1� �(x))�
nX

i=1

pixi +
⇣
1� a(1� �(x))

⌘
�xmin � µ

nX

i=1

xi +
1

2
�+

1

2

nX

i=1

Ixi>0µ.

Note that

LW (x)  a(1� �(x))�
⇣ nX

i=1

pixi � xmin

⌘
+ (�xmin � µ|x|) + 1

2
(�+ nµ)

Hence, by (4.3) there exists a constant c = min
x�0

{µ � �xmin/|x|�a(1 � �(x))�(
Pn

i=1 pixi �

xmin)/|x|} > 0 and d = 1
2(�+ nµ) such that

LW (x)  �c|x|+d, 8x 2 Zn
�0.

By [56, Theorem 4.3], the above implies (4.4) and thus stability. ⇤
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4.3.2 Proof of Theorem 5

Proposition 5. The optimal cost function J
⇤ : Zn

�0 ! R has the following properties:

(i) (symmetry) J
⇤ is symmetric, i.e. J

⇤(x) = J
⇤(�x) where �x is a permutation of x.

(ii) (monotonicity) J⇤ is non-decreasing, i.e. J⇤(x) � J
⇤(y) if xi � yi for all i (1  i  n).

(iii) (convexity) J
⇤ is convex in each variable, i.e. J

⇤(x + ei) � J
⇤(x)  J

⇤(x + 2ei) �
J
⇤(x+ ei).

(iv) (Schur convexity) J
⇤ is Schur convex, i.e. J

⇤(x+ ei) � J
⇤(x+ ej) if xi � xj.

(v) (supermodularity) J
⇤ is supermodular, i.e. J

⇤(x + ei + ej) + J
⇤(x) � J

⇤(x + ei) +

J
⇤(x+ ej).

Since we need the symmetry and Schur convexity in the proof of Theorem 5, we provide

the proofs of them and omit the proofs of other properties.

Proof of symmetry. Note that for any x,

• |�x|= |x|,

• {�((x� e1)+), · · · ,�((x� en)+)} is a permutation of {(x� e1)+, · · · , (x� en)+},

• {�(x+ e1), · · · ,�(x+ en)} is a permutation of {x+ e1, · · · , x+ en},

then by (4.6) we can conclude that J⇤(x) = J
⇤(�x). ⇤

Proof of Schur convexity. We will use induction to prove xi � xj ) J
(k)(x+ei) � J

(k)(x+ej)

for any x, k.

Base Step. It is easy to verify that J
(0) = 0, J (1)(x) = |x| and J

(2)(x) = (1 + ⇤)|x|+� �
µ
P

i Ixi>0. Then we have xi � xj ) J
(2)(x + ei) � J

(2)(x + ej) for any x. Note that the

inequality is strict for some x, say (1, 0, · · · , 0). The reason we start the base step from

k = 2 is to avoid reaching trivial conclusions, say all inequalities are basically equalities.

We will use similar base steps in the proofs of Theorem 5 and Theorem 7.
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Induction Step. According to the value iteration (4.7),

J
(k+1)(x+ ei)� J

(k+1)(x+ ej) =µ

nX

l=1

[J (k)((x+ ei � el)
+)� J

(k)((x+ ej � el)
+)]

+ �

h
min
l

J
(k)(x+ ei + el)�min

l
J
(k)(x+ ej + el)

i

+min

⇢
cb, a�

h nX

l=1

plJ
(k)(x+ ei + el)�min

l
J
(k)(x+ ei + el)

i�

�min

⇢
cb, a�

h nX

l=1

plJ
(k)(x+ ej + el)�min

l
J
(k)(x+ ej + el)

i�
.

Note that based on the induction hypothesis, when xi � xj , for any l we have

J
(k)((x� el)

+ + ei) � J
(k)((x� el)

+ + ej),

J
(k)(x+ ei + el) � J

(k)(x+ ej + el),

and thus

J
(k)((x+ ei � el)

+) � J
(k)((x+ ej � el)

+),

min
l

J
(k)(x+ ei + el) � min

l
J
(k)(x+ ej + el).

Then we can conclude that

J
(k+1)(x+ ei) � J

(k+1)(x+ ej).

Therefore, the Schur convexity xi � xj ) J
⇤(x+ ei) � J

⇤(x+ ej) always holds. ⇤

Proof of Theorem 5. Let m = argmini xi. To demonstrate the existence of the threshold

policy, we will show that

�
⇤(x+ ei) � �

⇤(x) (8i 6= m)

�
⇤(x+ em)  �

⇤(x).
(4.8)

Because of Schur convexity, J⇤(x+ ei) � J
⇤(x+ em) (8i 6= m). We can rewrite (4.6) as

J
⇤(x) = min

b2{0,1}

⇢
|x|+cbb+µ

nX

i=1

J
⇤((x�ei)+)+�J

⇤(x+em)+(1�b)a�
 nX

i=1

piJ
⇤(x+ei)�J⇤(x+em)

��
.
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Let �(x) =
nP

i=1
piJ

⇤(x+ ei)� J
⇤(x+ em), then (4.8) is essentially

�(x+ ei) � �(x) (8i 6= m)

�(x+ em)  �(x).
(4.9)

We will use induction based on value iteration to prove (4.9), that is, let �(k)(x) =
nP

i=1
piJ

(k)(x+ ei)� J
(k)(x+ em), it is su�cient to show

�(k)(x+ ei) � �(k)(x) (8i 6= m)

�(k)(x+ em)  �(k)(x),
(4.10)

for all k.

Induction step. According to the value iteration (4.7), we have 8j 6= m,

�(k+1)(x+ ej)��(k+1)(x) =µ

nX

i=1

[�(k)((x+ ej � ei)
+)��(k)((x� ei)

+)]

+ �[�(k)(x+ ej + em)��(k)(x+ em)]

+
nX

i=1

pimin
n
cb, a��

(k)(x+ ej + ei)
o
�min

n
cb, a��

(k)(x+ ej + em)
o

�
nX

i=1

pimin
n
cb, a��

(k)(x+ ei)
o
+min

n
cb, a��

(k)(x+ em)
o
,

and

�(k+1)(x+ em)��(k+1)(x) =µ

nX

i=1

[�(k)((x+ em � ei)
+)��(k)((x� ei)

+)]

+ �[�(k)(x+ 2em)��(k)(x+ em)]

+
nX

i=1

pimin
n
cb, a��

(k)(x+ em + ei)
o
�min

n
cb, a��

(k)(x+ 2em)
o

�
nX

i=1

pimin
n
cb, a��

(k)(x+ ei)
o
+min

n
cb, a��

(k)(x+ em)
o
,

Note that based on the induction hypothesis, we have 8j 6= m,

�(k)((x+ ej � ei)
+) � �(k)((x� ei)

+) � �(k)((x+ em � ei)
+),

�(k)(x+ ej + ei) � �(k)(x+ ei) � �(k)(x+ em + ei),

�(k)(x+ ej + em) � �(k)(x+ em) � �(k)(x+ 2em).
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Then we can conclude that

�(k+1)(x+ ej) � �(k+1)(x) (8j 6= m)

�(k+1)(x)  �(k+1)(x+ em).

Thus the existence of an optimal threshold policy is established. ⇤

4.3.3 Numerical Analysis

In this subsection, we introduce an algorithm that can estimate the optimal state-

dependent protecting policy �
⇤, then we use it to conduct numerical analysis on 1) the

relationship between the incentive to defend and key parameters; 2) the comparison between

the optimal policy and two naive open-loop policies.

We call the solution algorithm truncated policy iteration (see Algorithm 1), it is adapted

from the classic policy iteration algorithm [77] and based on the dynamic programming (4.7).

The incentive to defend is non-decreasing in the failure probability a, non-increasing in

the technology cost cb and non-decreasing in the throughput �. See Figure 4.5.

Figure 4.5: The relationship between �⇤ and a, cb, � (fixing µ = 1, n = 2).

The optimal closed-loop protecting policy �
⇤ can significantly reduces the security risk,

compared to the open-loop policies. See Figure 4.6. The simulation results are based on

the average of 20 episodes, each with 10000s.
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Algorithm 1 Truncated policy iteration for estimating � ⇡ �
⇤ (continuing)

Algorithm parameters: small ✏ > 0
Initialize array J 2 R and � 2 {0, 1} arbitrarily (e.g. J(x) = 0, �(x) = 0, for all x 2 X =
{0, 1, 2, · · · , B}n
repeat

repeat
� 0
foreach x 2 X do

v  J(x)
c |x|+cb�(x)
J(x) c+

P
x0 p(x0|x, b)J(x0)

� max(�, |v � J(x, b)|)
end

until � < ✏;
stable True

foreach x 2 X do
old-action �(x)

if a�

⇣P
i
piJ

⇤(x+ ei)�minj J⇤(x+ ej)
⌘
< cb then

�(x) = 0
end
else

�(x) = 1
end
if old-action 6= ⇡(x) then

stable False

end

end

until stable = True;
Output a deterministic policy � ⇡ �

⇤

Figure 4.6: The comparison of cumulative cost between open-loop policies and the optimal closed-loop
policy (� = 0.4, µ = 0.25, cb = 0.005).
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4.4 Defense against strategic attacks

For the state-dependent attacking and defending strategies, we derive the following

property for the stability of the n-server system and for any equilibrium:

Theorem 6. Consider the n-server system subject to attacks. The attacker (resp. defender)

follows a Markovian strategy ↵ : Zn
�0 ! [0, 1] (resp. � : Zn

�0 ! [0, 1]). Then, the n-server

system is stable if there exists a compact set X0 = [0, ✓]n such that for any x 2 Zn
�0, when

x is not a diagonal vector, we have

↵(x)(1� �(x)) <
µ� �xmin/|x|

�(xmax � xmin)/|x|
, (4.11)

where xmax = maxi xi. Furthermore, any equilibrium (↵⇤
,�

⇤) must satisfy the above, and

the number of jobs is upper-bounded by

X̄  �+ nµ

2c
, (4.12)

where c = min
x�0

{µ� �xmin/|x|�↵(x)(1� �(x))�(xmax � xmin)/|x|}.

Next, we discuss the equilibria of the stochastic security game.

Definition 6. The optimal attacking (resp. defending) strategy ↵
⇤ (resp. �

⇤) satisfies that

for each state x 2 Zn
�0,

↵
⇤(x) = argmax

↵
V

⇤
A(x,�

⇤), �
⇤(x) = argmin

�
V

⇤
B(x,↵

⇤).

The value of the attacker (defender) is V
⇤
A(x,�

⇤) (resp. V
⇤
B(x,↵

⇤)). In particular, (↵⇤
,�

⇤)

is a Markovian perfect equilibrium.

Proposition 6. The Markovian perfect equilibrium of this two-person non-cooperative stochas-

tic security game always exists.

Proof. Note that the state space Zn
�0 is countable and the action space [0, 1] is compact.

By [25], the total-discounted return equilibrium policy exists. ⇤

According to Shapley’s extension on minimax theorem for stochastic game [71],

V
⇤
B(x,↵

⇤) = V
⇤
A(x,�

⇤) = V
⇤(x).

Similar to the derivation of (4.6), by assuming ⇢+ �+ nµ = 1 we get

V
⇤(x) =max

↵
min
�

⇢
|x|+cb�(x)� ca↵(x) + µ

X

i

V
⇤((x� ei)

+) + �min
j

V
⇤(x+ ej)

+ ↵(x)(1� �(x))�
⇣
max

j
V

⇤(x+ ej)�min
j

V
⇤(x+ ej)

⌘�
. (4.13)
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The main theorem of this section is given below.

Theorem 7. The stochastic security game has the following regimes of Markovian perfect

equilibria (↵⇤
,�

⇤):

• Type I: (0, 0) (low risk)

• Type II: (1, 0) (medium risk)

• Type III: (cb/�⇤, 1�ca/�
⇤) (high risk) where �

⇤(x) = �(maxj V ⇤(x+ej)�minj V ⇤(x+

ej))

Furthermore, Type I and Type II regimes are characterized by n(n � 1) non-intersecting

symmetric monotonically non-decreasing threshold functions; Type II and Type III regimes

are characterized by other n(n�1) non-intersecting symmetric monotonically non-decreasing

threshold functions (see Figure 4.7 and Figure 4.8).

Figure 4.7: The equilibria regimes of the stochastic security game for a two-queue system.

Figure 4.8: The optimal attacking and defending strategies for a two-queue system.
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4.4.1 Proof of stability results

Consider the quadratic Lyapunov function

W (x) =
1

2

nX

i=1

x
2
i .

Applying infinitesimal generator, we have

LW (x) = ↵(x)(1� �(x))�xmax +
⇣
1�↵(x)(1� �(x))

⌘
�xmin�

nX

i=1

µxi +
1

2
�+

1

2

nX

i=1

Ixi>0µ.

Note that

LW (x)  ↵(x)(1� �(x))�(xmax � xmin) + �xmin � µ|x|+1

2
(�+ nµ).

Hence, by (4.11) we have c = min
x

{µ � �xmin/|x|�↵(x)(1� �(x))�(xmax � xmin)/|x|)} > 0

and d = 1
2(�+ nµ) such that

LW (x)  �c|x|+d, 8x 2 Zn
�0.

By [56, Theorem 4.3], the above implies (4.12) and thus stability. ⇤

4.4.2 Proof of Theorem 7

Proposition 7. The value function V
⇤ : Zn

�0 ! R has the following properties:

(i) V
⇤ is symmetric, i.e. V

⇤(x) = V
⇤(�x) where �x is a permutation of x.

(ii) V
⇤ is non-decreasing, i.e. V

⇤(x) � V
⇤(y) if xi � yi for all i (1  i  n).

(iii) V
⇤ is convex in each variable, i.e. V

⇤(x+ ei)� V
⇤(x)  V

⇤(x+ 2ei)� V
⇤(x+ ei).

(iv) V
⇤ is Schur convex, i.e. V

⇤(x+ ei) � V
⇤(x+ ej) if xi � xj.

(v) V
⇤ is supermodular, i.e. V

⇤(x+ ei + ej) + V
⇤(x) � V

⇤(x+ ei) + V
⇤(x+ ej).

The proof should be similar to the proof of Proposition 5, so we omit it here.

Proof of Theorem 7. Based on the symmetry, without loss of generality, we only need to

consider the case when x1 = maxi xi, xn = mini xi. Because of Schur convexity, V (x+e1) =

maxj V (x+ ej), V (x+ en) = minj V (x+ ej). We can rewrite (4.13) as

V
⇤(x) =max

↵
min
�

⇢
|x|+cb�(x)� ca↵(x) + µ

X

i

V
⇤((x� ei)

+) + �V
⇤(x+ en)

+ ↵(x)(1� �(x))�
⇣
V

⇤(x+ e1)� V
⇤(x+ en)

⌘�
. (4.14)



64

Let D(x) = V
⇤(x+ e1)� V

⇤(x+ en). To demonstrate the existence of threshold functions,

we will show that the type of the equilibrium is monotonically non-decreasing in x1 when

other variables are fixed and monotonically non-increasing in xn when other variables are

fixed, that is,

D(x+ e1) � D(x), D(x+ en)  D(x). (4.15)

We will use induction based on value iteration to prove, that is, let D(k)(x) = V
(k)(x+e1)�

V
(k)(x+ en), it is su�cient to show

D(k)(x+ e1) � D(k)(x), D(k)(x+ en)  D(k)(x). (4.16)

Induction step. According to the value iteration form of (4.14), we have

D(k+1)(x+ e1)�D(k+1)(x) =µ[D(k)(x)�D(k)((x� e1)
+)]

+ µ[D(k)((x+ e1 � en)
+)�D(k)((x� en)

+)]

+ �[D(k)(x+ e1 + en)�D(k)(x+ en)]

+ max
n
0,min

n
�D(k)(x+ 2e1)� ca, cb �

cacb

�D(k)(x+ 2e1)

o

�max
n
0,min

n
�D(k)(x+ e1 + en)� ca, cb �

cacb

�D(k)(x+ e1 + en)

o

�max
n
0,min

n
�D(k)(x+ e1)� ca, cb �

cacb

�D(k)(x+ e1)

o

+max
n
0,min

n
�D(k)(x+ en)� ca, cb �

cacb

�D(k)(x+ en)

o
.

Note that based on the induction hypothesis, we have

D(k)((x+ e1 � en)
+) � D(k)((x� en)

+) � D(k)(x) � D(k)((x� e1)
+),

D(k)(x+ 2e1) � D(k)(x+ e1) � D(k)(x+ e1 + en) � D(k)(x+ en).

Then we can conclude that D(k+1)(x+e1) � D(k+1)(x) and prove D(k+1)(x)  D(k+1)(x+en)

in a similar way. Thus the existence of the threshold functions is established. The derivation

of the equilibria regimes is given in the following subsection. ⇤

4.4.3 Equilibrium analysis

Based on the Bellman equation (4.13), we develop an algorithm adapted from Shapley’s

algorithm [2, 71] to compute the minimax value and minimax equilibrium strategy. See

Algorithm 2.
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Algorithm 2 Shapley’s algorithm for estimating V ⇡ V
⇤, � ⇡ �

⇤, ↵ ⇡ ↵
⇤ (continuing)

Set V (x) = 0 for all x 2 X
repeat

� 0
foreach x 2 X do

v  V (x)
Build auxiliary matrix game M(x, V )
Compute the value val(M) by using Shapley-Snow method
V (x) val(M)
� |v � V (x)|

end

until � < ✏;
foreach x 2 X do

Build auxiliary matrix game M(x, V )
Compute ↵ and � from M(x, V ) by using Shapley-Snow method

end

Here the auxiliary matrix game M(x, V ) is

⇣
|x|+µ

X

i

V ((x� ei)
+) + �min

j
V (x+ ej)

⌘"1 1

1 1

#
+

"
0 cb

�ca + � �ca + cb

#

and the value val(M) given by Shapley-Snow method [72] is

val(M) =

8
>>>>><

>>>>>:

|x|+µ
P
i
V ((x� ei)+) + �minj V (x+ ej), � < ca

|x|�ca + µ
P
i
V ((x� ei)+) + �maxj V (x+ ej), ca  � < cb

|x|+cb + µ
P
i
V ((x� ei)+) + �minj V (x+ ej)� cacb/�, d � max{ca, cb}

where � = �(maxj V (x+ ej)�minj V (x+ ej)).

Remark 5. The equilibrium (↵⇤
,�

⇤) and the value V
⇤ are in the following three cases

depending on the relationship between �
⇤ = �(maxj V ⇤(x+ej)�minj V ⇤(x+ej)) and ca, cb.

• �
⇤
< ca ) (↵⇤

,�
⇤) = (0, 0)

• ca  �
⇤
< cb ) (↵⇤

,�
⇤) = (1, 0)

• �
⇤ � max{ca, cb}) (↵⇤

,�
⇤) = (cb/�⇤, 1� ca/�

⇤)
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4.5 Concluding Remarks

In this chapter, we analyze the reliability/security risk of feedback-controlled queueing

systems and propose advice for strategic defense. We consider a system of parallel servers

and queues with dynamic routing subject to reliability and/or security failures. For the re-

liability setting, we formulate it as an infinite-horizon Markov decision problem. We derive

su�cient conditions for stability under state-dependent defending strategies. By formulat-

ing the infinite-horizon dynamic programming, we prove the threshold-based characteristic

of the system operator’s optimal protecting policy. We also use the truncated policy itera-

tion to compute the policy. For the security setting, we formulate it as an attacker-defender

game. The attacker selects the probability of modifying a job’s allocation while the defender

selects the probability of defending a job’s allocation. Both attacking and defending induce

technological costs, so the defender has to balance the technological cost and queuing cost.

We characterize the equilibria regimes and apply Shapley’s algorithm to compute the state-

dependent strategies for both players. We also present numerical analysis to illustrate our

proposed models and methods.

This work can be further extended to general networks. Another research direction

of future studies is the algorithm design. Specifically, the truncated policy iteration and

the Shapley’s algorithm have the limitations that 1) they can only run for finite state

space rather than countable infinite state space; 2) they need a relatively large space for

storage. Such limitations motive the design of more e�cient (in both time and space) deep

reinforcement learning algorithms. It may be useful to utilize the threshold-based properties

and policy/value function optimization in the design.

This work also provides the basis for allocating recovery resources and designing reliable

failure-tolerant routing algorithms. The results can also support the design of secure trans-

portation and logistics systems. Specific applications include app-based routing, signal-free

intersection control, and packet routing.
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