

Initial

Online Empirical validation of network learning with taxi GPS data from Wuhan, China

Introduction

- Our prior research developed a statistically cheap method to monitor transportation network performance by using only a few groups of agents without forecasting the population flows.
- The "multi-agent inverse optimization" (MAIO) method infers congested links' capacity dual variables using samples of agents' inverse shortest path problems.
- This empirical study validates the MAIO method by using real taxi trajectory data to simulate online monitoring environment and learn network parameters.
- This work demonstrates how taxi trajectory data quantifies and explains the change of network states (e.g. congestion effects).

Multi-agent Inverse Optimization Method

Iteration *i*

Proposed Validation Experiment Design

- . Initiate with values of link capacity dual variables equal to zero for all links in the study network.
- 2. Starting at 5:00AM, and every 5 minutes thereafter until 9:00AM,
 - a. For all the trajectories that arrived in that period, identify OD pairs.
 - b. Run the path reconstruction algorithms to get real-time travelers' choices for each of the OD pairs (in this step, the traveler's choice is assumed as the shortest path).
 - c. Compare the predicted route and the actual route chosen.
 - d. Run MAIO to update the dual variables based on the reconstructed path.
 - e. Compute the correlation between real travel times and estimated travel time.

Funding: NSF grant CMMI-1652735

Susan Jia Xu¹, Qian Xie¹, Joseph Y.J. Chow^{1*}, Xintao Liu²

¹Depatment of Civil and Urban Engineering, Tandon School of Engineering, New York University *Corresponding author: joseph.chow@nyu.edu ²Depatment of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University

Data Processing Framework

Iteration i + 1

(Criteria 1)

(Criteria 2)

Hotspot Identification

Taxi ID	Timestamp	Longitude	Latitude	Status	dist(P, O)	dist(P, D)	inBetween	Start/End
9018	5/6/2014,7:00:01	114.26105	30.543255	1	805	4973	0	0
9018	5/6/2014,7:01:01	114.26089	30.546388	1	457	5077	1	1
9018	5/6/2014,7:03:01	114.257895	30.548533	1	350	5423	1	0
9018	:	:	:	:	:	:	:	:
9018	5/6/2014,7:16:01	114.312165	30.538913	1	5100	647	1	0
9018	5/6/2014,7:17:01	114.311593	30.53681	1	5111	411	1	-1
9018	5/6/2014, 7:19:01	114.311227	30.535638	0	5118	282	0	0

Trip Extraction

Matching-link Candidates^[1]

Case Study – Wuhan Downtown

Wuhan, China

855 nodes 2833 links

132 samples observed for OD 1 48 samples observed for OD 2

53 different path taken for OD 1 29 different path taken for OD 2

> [1] Zhao, Xiangmo, et al. "Advanced topological map matching algorithm based on D-S theory." Arabian Journal for Science and Engineering 43.8 (2018): 3863-3874

Best-fit Path

Samples of route diversions for one OD

Conclusions and Future Work

- Our earlier study only provided a theoretical argument and numerical illustrations. This work fills in the research gap by conducting an empirical validation experiment with real route observations obtained from taxi GPS trajectory data.
- Network parameters like link capacity dual variables can be updated using only samples of individual route observations, without estimating the total link or path flows.
- Future work should implement the system in a real-world setting using GIS tools and monitor with predefined thresholds to set alerts for dual variables in an online dashboard. price increases due to capacity degradation can also be meaningful.
- Monitoring a network before, during, and after a disaster to quantify the impact of dual
- Due to user privacy issues in GPS data sharing, we can consider using a blockchain or a differential privacy oriented database to anonymize GPS data.