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Abstract— Feedback dynamic routing is a commonly used
control strategy in transportation systems. This class of control
strategies rely on real-time information about the traffic state
in each link. However, such information may not always be
observable due to temporary sensing faults. In this article, we
consider dynamic routing over two parallel routes, where the
sensing on each link is subject to recurrent and random faults.
The faults occur and clear according to a finite-state Markov
chain. When the sensing is faulty on a link, the traffic state on
that link appears to be zero to the controller. Building on the
theories of Markov processes and monotone dynamical systems,
we derive lower and upper bounds for the resilience score, i.e.
the guaranteed throughput of the network, in the face of sensing
faults by establishing stability conditions for the network. We
use these results to study how a variety of key parameters
affect the resilience score of the network. The main conclusions
are: (i) Sensing faults can reduce throughput and destabilize
a nominally stable network; (ii) A higher failure rate does not
necessarily reduce throughput, and there may exist a worst rate
that minimizes throughput; (iii) Higher correlation between the
failure probabilities of two links leads to greater throughput;
(iv) A large difference in capacity between two links can result
in a drop in throughput.

Keywords: Traffic control, cooperative dynamical sys-
tems, piecewise-deterministic Markov processes, sensing
faults.

I. INTRODUCTION

The rapidly growing deployment of traffic sensing and
vehicle-to-vehicle/infrastructure (V2V/ V2I) communica-
tions has enabled the concept of intelligent transportation
system (ITS). In ITS, system operators and travelers have
access to real-time traffic conditions and can thus make better
decisions. Dynamic routing is a typical ITS capability, which
is conducted via route guidance tools such as Google Maps
and WAZE. System operators can also influence routing
via tolling and instructions for traffic diversion, which also
rely on real-time traffic conditions. A major challenge for
dynamic routing in ITS is how to ensure system functionality
and efficiency under a variety of sensing faults. Quality
of sensing and communications significantly affects system
performance. However, data health is a serious issue that
system operators must face. On some highways, up to 30%-
40% of loop sensors do not report accurate measurements
[1], [2]; similar issue exists for camera sensors. Even though
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some routing guidance tools may have certain internal fault
detection and correction actions, the benefits of such actions
can be further evaluated. Moreover, without appropriate
fault-tolerant mechanisms, feedback control algorithms may
make decisions based on wrong information, and ITS may
even perform worse than a comparable conventional trans-
portation system. Therefore, ITS will not be well accepted
by the public and transportation authorities unless the impact
of sensing faults is adequately evaluated and addressed.
However, such impact has not been well understood, and
practically relevant fault-tolerant routing algorithms have not
been developed.

In this paper, we propose a novel model that synthesizes
traffic flow dynamics and stochastic sensing faults. Based
on this model, we evaluate the impact of faults on fault-
unaware routing algorithm and derive practically relevant
insights for designing fault-tolerant routing algorithms in
ITS. We consider the routing problem over two parallel
links, as shown in Fig. 1. Our approach and results can

Fig. 1: The two-link network facing the sensing faults.

be extended to more complex networks and a broader class
of ITS control capabilities, such as ramp metering and
speed limit control. We consider a stochastic model, since
in practice it is not easy to deterministically predict when
and where a sensing fault will occur. We will show that
this model leads to tractable analysis and insightful results
for fault-tolerant design of ITS. We study the stability and
guaranteed throughput of the network, which we consider
as the resilience score. We also establish the link between
the resilience score and key model parameters, including the
number of fault-prone links and the average frequency and
duration of faults.

Existing model-based traffic management approaches typ-
ically assume complete knowledge of the traffic condition
[3], [4], [5], [6], but feedback traffic management for ITS in
the face of sensing faults has not been well studied. Como et
al. [7] studied the resilience of distributed routing in the face
of physical disruptions to link capacities in a dynamic flow
network. Lygeros et al. [8] proposed a conceptual framework
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for fault-tolerant traffic management, but the concrete algo-
rithms are still yet to be developed. A body of work on fault-
tolerant control has been developed for a class of dynamical
systems [9], [10], [11]. However, very limited results are
available for recurrent and random faults. In addition, there
exist some results on adaptive/learning-based fault-tolerant
control with applications in electrical/mechanical/aerospace
engineering [12], [13], [14], but these results are not directly
applicable to ITS, nor do they explicitly consider stochastic
sensing faults.

Our modeling approach is innovative in that we model the
occurrence and clearance of sensing faults as a finite-state,
continuous-time Markov process. If the sensing on a link is
normal, travelers know the true traffic state (traffic density)
on the link. If the sensing is faulty, the traffic state will appear
to be zero to the travelers. Besides such denial-of-service,
our modeling approach can also be extended to incorporate
other forms of sensing faults, such as bias and distortion.
We adopt the classical logit model [15] for routing; the
essential principle of this model is that more traffic will
go to a less congested link. When the sensing on a link is
faulty, travelers may mistakenly consider a congested link to
be uncongested. We show that such faulty information may
affect the network’s throughput. The discrete states of the
Markov process are essentially modes for the flow dynamics,
which govern the evolution of the continuous states. Hence,
our model belongs to a class of stochastic processes called
piecewise-deterministic Markov processes [16], [17]. Similar
models have been used for demand/capacity fluctuations
[18], [19]; this paper extends the modeling approach to
sensing faults.

A key step for resilience analysis is to determine the
stability of the traffic densities under various combinations
of parameters. We study the stability of the network based on
the theory of continuous-time Markov processes [20]. We de-
rive a necessary condition for stability by constructing a posi-
tively invariant set for the dynamic flow network. We derive
a sufficient condition by considering a quadratic, switched
Lyapunov function that verifies the Foster-Lyapunov drift
condition. We exploit a special property of the flow dynam-
ics, called cooperative dynamics [21], [22], to derive an easy-
to-check stability criterion, which states that the network is
stable if there exists a queuing state such that the rate of
change of the fastest growing queue averaged over the modes
is negative.

Based on the stability analysis, we analyze the network’s
throughput (resilience score). We define throughput as the
maximal inflow that the network can take while maintaining
stable. As a baseline, we first study the behavior of the
network if both links have the same flow functions. We
perturb the baseline in multiple dimensions (probability and
correlation of sensing faults on two links) and analyze how
throughput can be affected. We also show that throughput
reduces as the two link’s asymmetry increases.

The main contributions of this paper include (i) a novel
stochastic model for sensing fault-prone transportation net-
works, (ii) easy-to-check stability conditions for the network,

and (iii) resilience analysis under various settings. The rest of
this paper is organized as follows. In Section II, we introduce
the dynamic flow model with sensing faults. In Section III,
we establish the stability conditions. In Section IV, we study
the resilience score under various scenarios. In Section V,
we summarize the conclusions and mention several future
directions.

II. DYNAMIC FLOW MODEL WITH SENSING FAULTS

Consider the two-link network in Fig. 1. Let Uk(t) be the
flow into link k ∈ {1, 2} and Xk(t) be the traffic density of
link k at time t. The capacity of link k is Fk ∈ [0, 1] where
F1 + F2 = 1. The flow out of link k is fk(Xk(t)), which is
specified by the flow function

fk(xk) = Fk(1− e−xk), k = 1, 2. (1)

The source node is subject to a constant demand η ≥ 0,
which is considered as a model parameter rather than a state
or input variable in the subsequent analysis.

Travelers can observe the state X(t). However, the obser-
vation is not always accurate. We consider the sensing on
each link to be stochastically switching between a “good”
and a “bad” mode. That is, we consider a set S = {1, 2, 3, 4}
of sensing fault modes. Each mode s ∈ S is characterized
by a fault mapping Ts : R2

≥0 → R2
≥0 as

T1(x) =

[
x1
x2

]
, T2(x) =

[
0
x2

]
,

T3(x) =

[
x1
0

]
, T4(x) =

[
0
0

]
.

In mode s, the observed state is x̂ = Ts(x).
At the source node, the demand η is distributed to each

link according to a routing policy µ : R2
≥0 → R2

≥0,
which specifies the fraction of inflow that goes to each link
according to the logit model

µk(x) =
e−βx̂k∑2
j=1 e

−βx̂j
, k = 1, 2. (2)

Note that the routing is based on the observed state rather
than the true state.

For notational convenience, we write

µ(s, x) = µ(Ts(x)). (3)

That is, the routing policy can be viewed as a switching
function µ : S × R2

≥0 → R2
≥0 with a discrete argument

s ∈ S and a continuous argument x ∈ R2
≥0.

Then, we define the dynamics of the hybrid-state process
{(S(t), X(t)); t > 0} as follows. The discrete-state process
{S(t); t > 0} of the mode is a time-invariant finite-state
Markov process that is independent of the continuous-state
process {X(t); t > 0} of the traffic densities. The state space
of the finite-state Markov process is S. The transition rate
from mode s to mode s′ is λs,s′ . Without loss of generality,
we assume that λs,s = 0 for all s ∈ S [23]. Hence, the
discrete-state process evolves as follows:

Pr{S(t+δ) = s′|S(t) = s} = λs,s′δ+o(δ), ∀s′ 6= s, s ∈ S,
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where δ denotes infinitesimal time. We assume that the
discrete-state process is ergodic [24] and admits a unique
steady-state probability distribution {ps; s ∈ S} satisfying

ps
∑
s′ 6=s

λs,s′ =
∑
s′ 6=s

ps′λs′,s, ∀s ∈ S, (4a)

ps ≥ 0, ∀s ∈ S, (4b)∑
s∈S

ps = 1. (4c)

The continuous-state process {X(t); t > 0} is defined as
follows. For any initial condition S(0) = s and X(0) = x,

d

dt
Xk(t) = ηµk

(
S(t), X(t)

)
− fk

(
X(t)

)
, k = 1, 2. (5)

Note that the routing policy µ defined in (2)-(3) and the
flow function f defined in (1) ensure that X(t) is continuous
in t. We can define the flow dynamics with a vector field
G : S × R2

≥0 → R2 as follows:

G(s, x) := ηµ(s, x)− f(x). (6)

The joint evolution of S(t) and X(t) is in fact a piecewise-
deterministic Markov process and can be described com-
pactly using an infinitesimal generator [16], [17]

Lg(s, x) =GT(s, x)∇xg(s, x) +
∑
s′∈S

λs,s′(g(s′, x)− g(s, x)).

for any differentiable function g.
The network is stable if there exists Z <∞ such that for

any initial condition (s, x) ∈ S × R2
≥0

lim sup
t→∞

1

t

∫ t

r=0

E[|X(r)|]dr ≤ Z. (7)

This notion of stability follows a classical definition [25],
some authors name it as “first-moment stable” [26]. The rest
of this paper is devoted to establishing and analyzing the
relation between the stability of the continuous-state process
{X(t); t > 0} and the demand η.

III. STABILITY ANALYSIS

The main result of this section is as follows.
Theorem 1: Consider two parallel links with sensors

switching between two modes as defined in section II.

1) A necessary condition for stability is that

η
( 1

e−βx2 + 1
p2 +

1

2
p4

)
≤ F1, (8a)

η
( 1

e−βx1 + 1
p3 +

1

2
p4

)
≤ F2, (8b)

η < 1. (8c)

where xk is the solution to

η
e−βxk

1 + e−βxk
= Fk(1− e−xk), k = {1, 2}.

2) A sufficient condition for stability is that there exists
θ ∈ R2

≥0 such that

4∑
s=1

ps max
k∈{1,2}

{
η

e−βTs,k(θk)

e−βTs,k(θ2) + e−βTs,k(θ1)

− Fk(1− e−θk)
}
< 0 (9)

The rest of this section shows the proof of Theorem 1.

A. Proof of necessary condition

An apparent necessary condition for stability is η < 1. If
this does not hold, then the network is unstable even in the
absence of sensing faults [27].

First, an invariant set of the process {X(t); t > 0} is
M = [x1,∞) × [x2,∞) by noting that for any s ∈ S and
any (x1, x2) such that (x1, x2) /∈ M, the vector G of time
derivatives of the traffic densities has a non-zero component
pointing to the interior of the invariant set M; see Figure 2.
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Fig. 2: Illustration of the continuous state process and the invariant setM.
The arrows represent the vector field G defined in (6) for the four states.

Second, by ergodicity of the process {(S(t), X(t)); t >
0}, we have for k ∈ {1, 2},

Xk(t) = Xk(0) +

∫ t

0

(
uk(τ)− fk(τ)

)
dτ,

where uk(τ) and fk(τ) are inflow and outflow of link k at
time τ . Since limt→∞

1
tXk(0) = 0 and limt→∞

1
tXk(t) = 0

a.s., then

0 = lim
t→∞

1

t

(∫ t

0

(
uk(τ)− fk(τ)

)
dτ +Xk(0)−Xk(t)

)

= lim
t→∞

1

t

∫ t

0

(
uk(τ)− fk(τ)

)
dτ a.s.

Note that fk(τ) ≤ Fk for any τ ≥ 0 and k ∈ {1, 2}, hence

lim
t→∞

1

t

∫ t

0

uk(τ)dτ = lim
t→∞

1

t

∫ t

0

fk(τ)dτ ≤ Fk. (10)

According to the definition of steady-state probability,

lim
t→∞

1

t

∫ t

0

IS(τ)=sdτ = ps, a.s. ∀s ∈ S.
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Combining with (10), we obtain

F1 ≥ lim
t→∞

1

t

∫ t

0

u1(τ)dτ = lim
t→∞

1

t

∫ t

0

ηµ1(S(τ), X(τ))dτ

=η lim
t→∞

1

t

4∑
s=1

∫ t

0

IS(τ)=sµ1(S(τ), X(τ))dτ

≥η lim
t→∞

1

t

(∫ t

0

IS(τ)=10dτ +

∫ t

0

IS(τ)=2
1

1 + e−βx2
dτ

+

∫ t

0

IS(τ)=30dτ +

∫ t

0

IS(τ)=4
1

2
dτ
)

=η
( 1

1 + e−βx2
lim
t→∞

1

t

∫ t

0

IS(τ)=2dτ

+
1

2
lim
t→∞

1

t

∫ t

0

IS(τ)=4dτ
)

= η
( p2

1 + e−βx2
+
p4
2

)
,

which gives (8a). We can prove (8b) in a similar way.

B. Proof of sufficient condition

Suppose that there exists a vector θ ∈ R2
≥0 satisfying (9).

Then, for the hybrid process {(S(t), X(t)); t > 0}, consider
the Lyapunov function V (s, x) =

1

2

(
(x1−θ1)+ +(x2−θ2)+

)2
+as

(
(x1−θ1)+ +(x2−θ2)+

where (xk − θk)+ = max{0, xk − θk}, k = 1, 2, and the
coefficients as are given by [a1, a2, a3, a4]T =
−

∑
i 6=1

λ1i λ12 λ13 λ14

λ21 −
∑
i 6=2

λ2i λ23 λ24

λ31 λ32 −
∑
i6=3

λ3i λ34

1 0 0 0


−1  Ḡ−G(1, θ)

Ḡ−G(2, θ)
Ḡ−G(3, θ)

1


where G is defined in (6) and Ḡ =

∑
s∈S psG(s, θ). Based

on the ergodicity assumption of the mode switching process,
the matrix in the above is invertible. This Lyapunov function
is valid in that V (s, x)→∞ as |x|→ ∞ for all s. Define

Ds = max
k∈{1,2}

(
µk(s, θ)− fk(θk)

)
, s ∈ S. (11)

The Lyapunov function V essentially penalizes the quan-
tity (x − θ)+, which can be viewed as a “derived state”.
Apparently, boundedness of X(t) is equivalent to the bound-
edness of (X(t) − θ)+ Note that the dynamic equation of
the derived state (x − θ)+ is slightly different from that of
x: Dk(S(t), X(t)) :=

d

dt
(Xk(t)− θk)+ =


G(S(t), X(t)) Xk(t) > θk,

G(S(t), X(t))+ Xk(t) = θk,

0 otherwise,

Applying the infinitesimal generator to the Lyapunov
function, we obtain

LV (s, x) =
( 2∑
k=1

Dk(s, x) +
∑
s′ 6=s

λs,s′(as′ − as)
)

|(xk − θk)+|+
2∑
k=1

as,kDk(s, x) (12)

This proof establishes the stability of the process
{(S(t), X(t)); t > 0} by verifying that the Lyapunov func-
tion V as defined above satisfies the Foster-Lyapunov drift
condition for stability [20]:

LV (s, x) ≤ −c|x|+d ∀(s, x) ∈ S × R2
≥0 (13)

for some c > 0 and d <∞, where |x| is the one-norm of x;
this condition will imply (7). To proceed, we partition R2

≥0,
the space of x, into two subsets:

X0 = {x : 0 ≤ x ≤ θ}, X1 = XC0 ;

that is, X0 and X1 are the complement to each other in the
space R2

≥0. In the rest of this proof, we first verify (13) over
X0 and then over X1.

To verify (13) over X0, note that µ and f are bounded
functions, so, for any as,k, there exists d <∞ such that

d1 ≥ as
2∑
k=1

Dk(s, x) ∀(s, x) ∈ S × R2
≥0. (14)

In addition, (xk−θk)+ = 0, k = 1, 2, . . . ,K for all x ∈ X0;
this and (12) imply LV (s, x) ≤ d1. Furthermore, for any
c > 0, there exists d2 = c|θ| such that d2 ≥ c|x| for all
x ∈ X0. Hence, letting d = d1 + d2, we have

LV (s, x) ≤ −c|x|+d ∀(s, x) ∈ S × X0. (15)

To verify (13) over X1, we further decompose X1 into the
following subsets:

X 1
1 = {x ∈ X1 : x1 ≥ θ1, x2 < θ2},
X 2

1 = {x ∈ X1 : x1 < θ1, x2 ≥ θ2},
X 3

1 = {x ∈ X1 : x1 ≥ θ1, x2 ≥ θ2}.

For each x ∈ X 1
1 , we have LV (s, x) =

(
D1(s, x)

+
∑
s′ 6=s

λs,s′(as′ − as)
)
|(x− θ)+|+as

2∑
k=1

Dk(s, x)

≤
(
µ1(s, x)− f1(x1) +

∑
s′ 6=s

λs,s′(as′ − as)
)
|(x− θ)+|

+ d1 ≤
(
Ds +

∑
s′ 6=s

λs,s′(as′ − as)
)
|(x− θ)+|+d1 (16)

From the definition of as, we have

Ds +
∑
s′ 6=s

λs,s′(as′ − as) =
1

4

∑
s′∈S

ps′Ds′

The above and (16) imply

LV (s, x) ≤ 1

4

(∑
s′∈S

ps′Ds′

)
|x|+d, x ∈ X 1

1 .

Let c := − 1
4

∑
s′∈S ps′Ds′ . From (9), we have c > 0. Thus,

we have

LV (s, x) ≤ −c|x|+d, ∀(s, x) ∈ X 1
1 .

Analogously, we can show

LV (s, x) ≤ −c|x|+d, ∀(s, x) ∈ X 2
1 ∪ X 3

1 ,
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and hence

LV (s, x) ≤ −c|x|+d, ∀(s, x) ∈ X1,

The above and (15) imply the drift condition (13), which
completes the proof.

IV. RESILIENCE ANALYSIS

In this section, we study the resilience score, i.e. the
guaranteed throughput (the supremum of η that maintains
stability), under various scenarios. We first consider two
symmetric links and focus on the impact of transition rates
of the discrete state (Section IV-A). Then, we study how
the throughput varies with the asymmetry of the links (Sec-
tion IV-B).

A. Impact of transition rates

If the two links are homogeneous in the sense that they
have same flow functions f1 = f2, we have the main result
of this section as follows:

Proposition 1: For the homogeneous network, the re-
silience score η∗, i.e. the guaranteed throughput has a lower
bound of

η∗ ≥ 1

1 + p2 + p3
. (17)

Proof : The lower bound results from the sufficient condi-
tion in Theorem 1.

The homogeneity implies F1 = F2 = 1
2 and θ1 = θ2. Now

(9) means there exists θ1 ∈ R≥0 such that(1

2
(p1 + p4) +

1

1 + e−βθ1
(p2 + p3)

)
η <

1

2
(1− e−θ1)

⇔
(

1 +
1− e−βθ1
1 + e−βθ1

(p2 + p3)
)
η < 1− e−θ1 . (18)

Let z = e−θ1 ∈ (0, 1], then (18) can be expressed as there
exists z ∈ (0, 1] such that(

1 +
1− zβ

1 + zβ
(p2 + p3)

)
η < 1− z

⇔ zβ+1 −
(

1− (1− p2 − p3)η
)
zβ

+z −
(

1− (1 + p2 + p3)η
)
< 0. (19)

Let g(z) be the left-hand side of (19). Since g(z) is
monotonically increasing on (0,1], (19) is equivalent to

g(0) = (1 + p2 + p3)η − 1 < 0.

Hence η < 1
1+p2+p3

, giving the lower bound. �
Next, we discuss how characteristics of link failures

(specifically, link failure rate and link failure correlation)
affect the resilience score.

Link failure rate: Suppose that the health of each link is
independent of the other link. Furthermore, suppose that the
failure rates of both links are identical, denoted as p, then

p2 = p3 = p(1− p),

η∗ =
1

1 + p2 + p3
=

1

1 + 2p(1− p)
.

When the link failure rate is either 0 or 1, the two-link
network becomes open-loop, the lower bound can naturally
be 1. The lower bound reaches minimum when the link
failure rate is 0.5; see Figure 3.

Link failure correlation: Suppose that the health of each
link is correlated with the other link while the failure rates
of both links are still identical. Denote the correlation as ρ,
then from p2 + p4 = p3 + p4 = p we can derive the explicit
expressions of the correlation and the lower bound:

ρ =
p4 − (p2 + p4)(p3 + p4)

√
p2p3

=
p− p2 − p2

p
,

η∗ =
1

1 + p2 + p3
=

1

1 + 2p(1− p− ρ)
.

As the link failure correlation increases from −p to 1 − p,
the lower bound increases from 1

1+2p to 1. When the failure
of the two links are strongly (positively) correlated, the two-
link network also turns to be open-loop and hence the lower
bound reaches 1; see Figure 3.
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Fig. 3: Impact of link failure probability (ρ = 0) and link failure
correlation (p = 0.5) on the lower bound of resilience score

B. Impact of heterogeneous link capacities
Now we relax the assumption of symmetric links and

allow F1 6= F2. Without loss of generality, we assume that
F1 ≥ F2. Instead, we will consider symmetric failure rate,
i.e. p2 = p3. The following result links the resilience score
to |F1 − F2|, which quantifies the asymmetry of links:

Proposition 2: Suppose that p2 = p3 and F1 ≥ F2. Then,
the resilience score has a lower bound of

η∗ ≥ min
{1− (F1 − F2)

1− p1
,

1− p4(F1 − F2)

1 + 2p2

}
. (20)

Proof : Let y = e−θ1 , z = e−θ2 , ρ = yβ−zβ
yβ+zβ

. (9) implies
that there exists y, z ∈ (0, 1] such that

p1 max
{ ηyβ

yβ + zβ
− F1(1− y),

ηzβ

yβ + zβ
− F2(1− z)

}
+p2 max

{ η

1 + zβ
− F1(1− y),

ηzβ

1 + zβ
− F2(1− z)

}
+p3 max

{ ηyβ

yβ + 1
− F1(1− y),

η

yβ + 1
− F2(1− z)

}
+p4 max

{η
2
− F1(1− y),

η

2
− F2(1− z)

}
≤ 0 (21)

If 1
2−p1 < F1−F2 ≤ 1, when η ≤ 1−(F1−F2)

1−p1 , there exists
y ≤ 1− η+F2

F1
such that (21) holds.

If 0 ≤ F1 − F2 ≤ 1
2−p1 , when

F1 − F2 ≤ η ≤
1− (1− p1 − 2p2)(F1 − F2)

1 + 2p2
,
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there exists y, z satisfying ρ(F1−F2) ≥ F1(1−y)−F2(1−
z) ≥ 0 and ρ < F1−F2

η such that (21) holds and when
η < F1−F2, there exists y ≤ 1− η+F2

F1
such that (21) holds.

Therefore,

η∗ ≥

{
1−(F1−F2)

1−p1 , 1
2−p1 < F1 − F2 ≤ 1

1−(1−p1−2p2)(F1−F2)
1+2p2

, 0 ≤ F1 − F2 ≤ 1
2−p1 �

Now we are ready to discuss how link capacity difference
affects the resilience score.

When F1 = F2, the lower bound is 1
1+2p2

, in consistence
with our lower bound in subsection IV-A, and the upper
bound is 1 (note that when

√
2 max{p2, p3} + p4 ≤ 1, we

can derive η < 1 from the necessary condition).
As F1 − F2 increases, the lower bound gradually drops

and after certain point, it drops faster to 0 while the upper
bound remains 1 for a while and then drops to 0. It means
that when the difference between two link capacities gets
larger, one link starts getting more congested than the other,
then the system can be less stable.

When F1 → 1, F2 → 0, the network has weak resilience
to the sensing faults and the resilience score tends to be zero.
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Fig. 4: Impact of link capacity difference on the lower and upper bound of
resilience score (p1 = p2 = p3 = p4 = 1/4)

V. CONCLUDING REMARKS

In this paper, we propose a two-link dynamic flow model
with sensing faults to study the stability conditions and
guaranteed throughput of the network. Based on this model,
we are able to derive lower and upper bounds of the
resilience score and analyze the impact of transition rates
and heterogeneous link capacities on them. This work can
be extended in several directions. First, we can consider a
complicated network with k links (not necessarily parallel)
rather than a simple two parallel link network. Second, other
forms of flow functions can be assumed in the model. Third,
the logit model can be replaced with other routing polices.
Last, several variations of fault modes can also be discussed.
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