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Abstract

In automated machine learning and other applications of Bayesian optimization,
deciding when to stop evaluating expensive black-box functions is an important
practical consideration. While several adaptive stopping rules have been proposed,
in the cost-aware setting they lack guarantees ensuring they stop before incurring
excessive function evaluation costs. We propose a cost-aware stopping rule for
Bayesian optimization that adapts to varying evaluation costs and is free of heuristic
tuning. Our rule is grounded in a theoretical connection to state-of-the-art cost-
aware acquisition functions, namely the Pandora’s Box Gittins Index (PBGI) and
log expected improvement per cost. We prove a theoretical guarantee bounding
the expected cumulative evaluation cost incurred by our stopping rule when paired
with these two acquisition functions. In experiments on synthetic and empirical
tasks, including hyperparameter optimization and neural architecture size search,
we show that combining our stopping rule with the PBGI acquisition function
consistently matches or outperforms other acquisition-function–stopping-rule pairs
in terms of cost-adjusted simple regret, a metric capturing trade-offs between
solution quality and cumulative evaluation cost.

1 Introduction

Bayesian optimization is a framework designed to efficiently find approximate solutions to optimiza-
tion problems involving expensive-to-evaluate black-box functions, where derivatives are unavailable.
Such problems arise in applications like hyperparameter tuning [22], robot control optimization
[18], and material design [27]. It works by iteratively, (a) forming a probabilistic model of the
black-box objective function based on data collected thus far, then (b) optimizing a function called
the acquisition function, which balances exploration-exploitation tradeoffs, to carefully choose a new
point at which to observe the unknown function in the next iteration.

In this work, we consider the cost-aware setting, where one must pay a cost to collect each data point,
and study adaptive stopping rules that choose when to stop the optimization process. After stopping
at some terminal time, we measure performance in terms of simple regret, which is the difference in
value between the best solution found so far and the global optimum. Collecting a data point can
reduce simple regret, but incurs cost in order to do so.

As an example, consider using a cloud computing environment to tune the hyperparameters of a
classifier in order to optimize a performance metric on a given test set. Training and evaluating
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test error takes some number of CPU or GPU hours, that may depend on the hyperparamaters used.
These come with a financial cost, billed by the cloud computing provider, which define our cost
function. The objective value is the business value of deploying the trained model under the given
hyperparameters—a given function of the model’s accuracy. From this perspective, simple regret
can be understood as the opportunity cost for deploying a suboptimal model instead of the optimal
one. Motivated by the need to balance cost-performance tradeoff in examples such as above, we aim
to design stopping rules that optimizes expected cost-adjusted simple regret, defined as the sum of
simple regret and the cumulative cost of data collection.

Several stopping rules have been proposed for Bayesian optimization. Simple heuristics—such as
fixing a maximum number of iterations or stopping when improvement falls below a threshold—are
widely used in practice [16, 17], but can either stop too early or lead to unnecessary evaluations. Other
approaches include acquisition-function-based rules that stop when, for instance, the probability of
improvement, expected improvement, or knowledge gradient drop below a preset threshold [16, 19, 8];
confidence-bound-based methods like UCB-LCB [17]; the expected minimum simple regret test [11];
as well as methods based on probabilistic regret bounds (PRB) [25]. Most of these target the classical
setting which does not explicitly incorporate function evaluation costs.

In this work, we study how to design cost-aware stopping rules, motivated by two primary factors.
First, state-of-the-art cost-aware acquisition functions such as the Pandora’s Box Gittins Index
(PBGI)[26] and log expected improvement per cost (LogEIPC) [1] have not yet been studied in
the adaptive stopping setting. This is important because—as our experiments in Section 4 will
show—for best performance, one should pair different acquisition functions with different stopping
rules. Second, while certain stopping rules, such as UCB-LCB, are guaranteed to achieve a low
simple regret, they are not necessarily guaranteed to do so with low evaluation costs. This is important
because—as our experiments will show—UCB-LCB will often incur high evaluation costs, resulting
in a high cost-adjusted simple regret.

Our main methodological contribution is a stopping rule that is provably Bayesian-optimal in the
independent evaluation case. This stopping rule is constructed based on ideas from Pandora’s Box
theory, which forms the theoretical foundation for the recently-proposed PBGI acquisition function.
It also aligns closely with an existing stopping rule previously proposed for expected improvement in
the classical non-cost-aware setting: when paired with LogEIPC, our proposal extends this stopping
rule to the cost-aware setting, thereby establishing a unified approach for cost-aware Bayesian
optimization under both kinds of acquisition functions. Our specific contributions are as follows:

1. A Novel Cost-Aware Stopping Criterion. We propose an adaptive stopping rule derived
naturally from Pandora’s box theory, establishing a unified and principled framework
applicable to cost-aware Bayesian optimization.

2. Theoretical Guarantees. We prove in Theorem 1 that our stopping rule, when paired with
the PBGI or LogEIPC acquisition functions, satisfies a theoretical upper bound on expected
cumulative cost up to stopping, which constitutes the first theoretical guarantee of this type
for any adaptive stopping rule for Bayesian optimization.

3. Empirical Validation. Our experiments show that combining the PBGI acquisition function
with our proposed stopping rule consistently matches or outperforms other combinations of
acquisition functions and stopping rules.

2 Bayesian Optimization and Adaptive Stopping

In black-box optimization, the goal is to find an approximate optimum of an unknown objective
function f : X → R using a limited number of function evaluations at points x1, . . . , xT ∈ X where
X is the search space and T is a given search budget, potentially chosen adaptively. The convention
measures performance in terms of expected simple regret [9, Sec. 10.1], which is given by

R = E
[
min

1≤t≤T
f(xt)− inf

x∈X
f(x)

]
(1)

where the expectation is taken over all sources of randomness, including the sequence of points
x1, . . . , xT selected by the algorithm. Bayesian optimization approaches this problem by building a
probabilistic model of f—typically a Gaussian process [21], conditioned on the observed data points
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(xt, yt)
T
t=1, where yt = f(xt). An acquisition function αt : X → R then guides the selection of new

samples by carefully balancing the exploration-exploitation tradeoff arising from uncertainty about f .

2.1 Cost-aware Bayesian Optimization

Cost-aware Bayesian optimization [13, 2] extends the above setup to account for the fact that
evaluation costs can vary across the search space. For instance, in the hyperparameter tuning example
of Section 1, costs can vary according to the time needed to train a machine learning model under a
given set of hyperparameters x. Cost-aware Bayesian optimization handles this by introducing a cost
function c : X → R+, which may be known or unknown depending on the setup. The cost function,
or observed costs, are then used to construct the acquisition function αt.

In this work, we focus primarily on the cost-per-sample formulation [6, 5, 26] of cost-aware Bayesian
optimization, which seeks methods achieving a low expected cost-adjusted simple regret

Rc = E

[
min

1≤t≤T
f(xt)− inf

x∈X
f(x)︸ ︷︷ ︸

simple regret

+

T∑
t=1

c(xt)︸ ︷︷ ︸
cumulative cost

]
. (2)

One can also work with the expected budget-constrained formulation [26], which incorporates budget
constraints explicitly, and seeks algorithms which achieve a low simple regret under an expected
evaluation budget. Here, performance is evaluated in terms of

R = E
[
min

1≤t≤T
f(xt)− inf

x∈X
f(x)

]
where x1, .., xT satisfy E

T∑
t=1

c(xt) ≤ B. (3)

The stopping rules we study can be applied in this setting as well: we discuss this in Section 3.2.

For both settings, we work with a number of acquisition functions—chiefly, log expected improvement
per cost (LogEIPC) [1] and the Pandora’s Box Gittins Index (PBGI) [26]. These, respectively, are

αLogEIPC
t (x) = log

EIf |x1:t,y1:t (x; y
∗
1:t)

c(x)
(4)

and

αPBGI
t (x) =

{
g where g solves EIf |x1:t,y1:t(x; g) = c(x), x /∈ {x1, . . . , xt}
f(x), x ∈ {x1, . . . , xt}

(5)

where EIψ(x; y) = E [max(y − ψ(x), 0)] is the expected improvement at point x with respect to
some random function ψ : X → R and a comparator point y, y∗1:t = min1≤s≤t ys is the best observed
value up to time t, and c(x) is the evaluation cost at point x. In the classical uniform-cost setting, we
also consider the classical lower confidence bound and Thompson sampling acquisition functions:
see Garnett [9] for additional details.

2.2 Adaptive Stopping Rules

At present, to the best of our knowledge, stopping rules for Bayesian optimization have only been
studied in the classical setting without explicit evaluation costs. Current methods can be broadly
categorized as follows:

1. Criteria based on convergence or significance of improvement. This includes empirical
convergence, namely stopping when the best value remains unchanged for a fixed number of
iterations, or the global stopping strategy (GSS) [3], which stops when the improvement is
no longer statistically significant relative to the inter-quartile range (i.e., the range between
the 25th percentile and the 75th percentile) of prior observations.

2. Acquisition-based criteria. This includes stopping rules built from acquisition functions such
as the probability of improvement (PI) [16], expected improvement (EI) [15, 19, 11], and
knowledge gradient (KG) [8]. These approaches typically stop when the acquisition value
falls below a fixed threshold—a predetermined constant, median of the initial acquisition
values, or the cost of sampling—but typically assume uniform costs and do not adapt to
evaluation costs which can vary across the search space.
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3. Regret-based criteria. This includes stopping rules based on confidence bounds such as
UCB-LCB [17] and the gap of expected minimum simple regrets [11]. These stop when
certain regret bounds fall below a preset or data-driven threshold. The related probabilistic
regret bound (PRB) stopping rule [25] stops when a candidate point is estimated to be
ϵ-optimal with probability at least 1− δ.

In settings beyond Bayesian optimization, Chick and Frazier [6], have proposed a cost-aware stop-
ping rules for finite-domain sequential sampling problems with independent values. Although this
formulation allows for varying costs, it does not extend to general Bayesian optimization settings
which use correlated Gaussian process models.

3 A Stopping Rule Based on the Gittins Index

In this work, we propose a new stopping rule tailored for two state-of-the-art acquisition functions
used in cost-aware Bayesian optimization: LogEIPC and PBGI, introduced in Section 2. As discussed
by Xie et al. [26], these acquisition functions are closely connected, arising from two different
approximations of the intractable dynamic program which defines the Bayesian-optimal policy for
cost-aware Bayesian optimization. We now show that this connection can be used to obtain a
principled stopping criterion to be paired with both acquisition functions.

A stopping rule for PBGI. To derive a stopping rule for PBGI, consider first the Pandora’s Box
problem, from which it is derived. Pandora’s Box can be seen as a special case of cost-per-sample
Bayesian optimization, as introduced in Section 2, where X = {1, . . . , N} is a discrete space and f
is assumed uncorrelated. In this setting, the observed values do not affect the posterior distribution
(i.e., f | x1:t, y1:t = f ), and thus the acquisition function value at point x is time-invariant and can be
written simply as αPBGI(x), where EIf (x;α

PBGI(x)) = c(x). Following Weitzman [24], one can
show using a Gittins index argument that selecting xt to minimize αPBGI is Bayesian-optimal under
minimization—the algorithm which does so achieves the smallest expected cost-adjusted simple
regret, among all adaptive algorithms.

One critical detail applied in the optimality argument of Weitzman [24] is that the policy defined by
αPBGI is not Bayesian-optimal for any fixed deterministic T . Instead, it is optimal only when the
stopping time T is chosen according to the condition2

min
x∈X\{x1,...,xt}

αPBGI(x) ≥ y∗1:t, (6)

where, as before, y∗1:t is the best value observed so far.

In the correlated setting we study, Xie et al. [26] extend αPBGI to an acquisition function by
recomputing it at each time step t based on the posterior mean and variance, which defines αPBGI

t
as in Eq. (5). For extending the stopping rule, a subtle design choice arises: should we use αPBGI

t−1

(before update) or αPBGI
t (after update) in Eq. (6)? While prior work [10] adopts the former, we

choose the latter for two main reasons.

First, it more faithfully reflects the intuition behind Weitzman’s original stopping rule. In the
independent setting, αPBGI(x) represents a kind of fair value for point x [12]. For evaluated
points x ∈ {x1, . . . , xt}, this is simply the observed function value. For unevaluated points x ̸∈
{x1, . . . , xt}, the fair value reflects uncertainty in f(x) and the cost c(x). The stopping rule (6) then
says to stop when the best fair value is among the already-evaluated points, namely, when no point
provides positive expected gain relative to its cost if evaluated in the next round, conditioned on
current observations. In the correlated setting, the fair value naturally extends to αPBGI

t (x). Second,
using αPBGI

t yields tangible empirical gains in cost-adjusted regret, as shown in Appendix C.2.

Connection with LogEIPC. The above reasoning may at first seem to be fundamentally tied to
the Pandora’s Box problem and its Gittins-index-theoretic properties. We now show that it admits a
second interpretation in terms of log expected improvement per cost, which arises from a completely

2As explained in Xie et al. [26], alternative tie-breaking rules also preserve optimality in cost-per-sample
optimization, and there exists a tie-breaking rule that yields optimality under expected-budget constraints. For
simplicity, we use the stopping-as-early-as-possible tie-breaking rule throughout this paper.
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Figure 1: Illustration of the PBGI/LogEIPC stopping rule under the uniform-cost setting. In this
example with 8 initial points being evaluated: when the cost-per-sample is large (c(x) ≡ 0.1), the
maximum LogEIPC acquisition value falls below the threshold 0.0, indicating stopping; the minimum
PBGI acquisition value exceeds the current best observed value, also indicating stopping. When the
cost-per-sample is small (c(x) ≡ 0.0001), the maximum LogEIPC acquisition value remains above
the threshold 0.0, indicating no stopping; the minimum PBGI acquisition value is smaller than the
current best observed value and again indicating no stopping.

different one-time-step approximation to the Bayesian-optimal dynamic program for cost-aware
Bayesian optimization in the general correlated setting.

To show this, we start with the definition above, and apply a sequence of transformations. Consider
an unevaluated point x ∈ X\{x1, . . . , xt}. Because αPBGI

t (x) is defined in Eq. (5) to be the unique
solution to

EIf |x1:t,y1:t(x;α
PBGI
t (x)) = c(x) (7)

and since EI(x; y) is strictly monotone (increasing under minimization) in y, any inequality involving
αPBGI
t (x; c) can be lifted through the EI function without changing its direction. This means that

αPBGI
t (x) ≥ y∗1:t holds if and only if EI

(
x; y∗1:t

)
≤ c(x). (8)

This means the PBGI stopping rule from Eq. (6) is equivalent to stopping when

EI
(
x; y∗1:t

)
≤ c(x) for all x ∈ X\{x1, . . . , xt} (9)

meaning stop when no point’s expected improvement is worth its evaluation cost. Rearranging the
inequality and taking logs, we can rewrite this condition using the LogEIPC acquisition function:

max
x∈X\x1:t

αLogEIPC
t (x; y∗1:t) ≤ 0. (10)

We call the stopping rule given by the equivalent conditions (6), (9), and (10) the PBGI/LogEIPC
stopping rule. Figure 1 gives an illustration of how the rule behaves in a simple setting, demonstrating
that it is more conservative—in the sense of preferring to stop earlier—when the cost is high.

3.1 A Theoretical Guarantee on Cost up to Stopping

In the discrete Pandora’s Box setting, maximizing αPBGI
t (x) is Bayesian-optimal in more than

one way: doing so not only achieves the best possible expected cost-adjusted simple regret, under
appropriately-scaled costs, it also achieves the best expected simple regret, among all algorithms
satisfying an expected budget constraint of the form

E

[
T∑
t=1

c(xt)

]
≤ B (11)
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where B > 0 is the total budget, and the cost function used in defining αPBGI
t (x) is λc(x) for some

cost-scaling factor λ which depends on B. A proof is given by Xie et al. [26, Theorem 2].

This result, at first, appear to be completely Pandora’s-Box-theoretic: it requires X to be discrete and
f to be uncorrelated. In the more general correlated setting of cost-aware Bayesian optimization, it is
not a priori clear how much costs our stopping rule will incur in expectation. To understand this, we
prove the following upper bound on the expected cumulative cost up to the stopping time.
Theorem 1. Consider minimizing objective function f , drawn from a stochastic process with
constant mean µ, over a compact, non-empty domain X , and let c be a known cost function
with finite mean. Assume the algorithm begins with one initial evaluation at a pre-selected
point x1 in X with cost C := c(x1), and subsequently runs either the PBGI or LogEIPC ac-
quisition function with the PBGI/LogEIPC stopping rule. Let the stopping time be defined as
τ := mint≥1

{
maxx∈X α

LogEIPC
t (x) ≤ 0

}
. Let U := µ− E[minx∈X f(x)] <∞ denote the upper

bound on expected cumulative improvement E
[∑τ

t=2(y
∗
1:t−1 − y∗1:t)

]
. Then the expected cumulative

cost up to stopping is bounded by

E

[
τ∑
t=1

c(xt)

]
≤ C + U. (12)

When f ∼ GP(µ,K), the term U on the right-hand side can be further upper bounded using classic
results on the expected supremum of a Gaussian process; see, for example, Lifshits [14, Theorem
10.1]. A proof of Theorem 1 is given in Appendix A. The proof also indicates that the theorem extends
to acquisition functions beyond PBGI and LogEIPC that ensure sufficient expected improvement
relative to cost before the stopping time τ ; see condition (17). This result demonstrates that the PBGI
stopping rule avoids excessive spending not just in Pandora’s Box [26], but also Bayesian optimization
with general correlations. As discussed below, Theorem 1 has another important implication for
settings where there is no direct conversion between objective function values and evaluation costs.

3.2 Practical Implementation Considerations for the PBGI/LogEIPC Stopping Rule

Choosing a cost scaling factor λ. In practice, evaluation costs often come in units that differ from
how benefit is measured—for example, run time versus monetary costs. To reconcile this, we multiply
costs by a scaling factor λ > 0, i.e., we use cost function λc(x) instead of c(x), in order to ensure
that costs λc(x) and objective values f(x) have the same units. For example, if one is willing to
spend 1000 seconds of time to improve the objective by 0.01, then one should set λ = 10−5.

If one knows the unit conversion explicitly—for instance, the hourly rate of a compute cluster and
the business value of improved model performance—then the scaling factor λ can be set directly.
Otherwise, Theorem 1 gives a principled heuristic for choosing λ. When applied the scaled-cost
setting, Theorem 1 bounds the expected total unscaled cost by C + U/λ. This means that if one
has an expected cost budget B, one can safely use scaling factor λ = (B − C)/U . This solves a
significant obstacle raised by Xie et al. [26].

Unknown costs. In practice, evaluation costs are often not known in advance. They can be
modeled in one of two ways: (i) as deterministic functions based on domain knowledge, for instance
in hyperparameter tuning by setting them proportional to the number of model parameters, or (ii) as
stochastic quantities modeled using a Gaussian process over the log costs. For the latter, Astudillo
et al. [2] proposed a general framework for handling unknown costs, which can also be applied to our
stopping rules. For the LogEIPC stopping rule, following Astudillo et al. [2, Proposition 2], the c(x)
in Eq. (10) can be replaced with

1

E[1/c(x)]
= exp

{
µln c(x)− (σln c(x))

2/2
}
. (13)

Alternatively, one could also replace it with
E[c(x)] = exp

{
µln c(x) + (σln c(x))

2/2
}
. (14)

The difference in sign before the variance term reflects how each formulation responds to predictive
uncertainty: (13) encourages exploration more than (14). For PBGI, under the unknown-cost setting,
c(x) in (5) should be replaced by E[c(x)] using (14), reflecting the manner in which costs enter the
respective root-finding problem. This means that in unknown-cost settings, the equivalence between
the PBGI and LogEIPC stopping rules holds when replacing c(x) by (14), but not by (13).
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Preventing spurious stops. Although our stopping rule has theoretical guarantees, in practice,
it—like other adaptive stopping rules—can still suffer from spurious stops caused by two main
sources which we now discuss. First, early in the optimization process, the Gaussian process’ model
parameters often fluctuate significantly as new data points are collected, causing unstable stopping
signals. To mitigate this, we enforce a stabilization period consisting of the first several evaluations,
during which we do not allow any stopping rule to trigger. Second, imperfect optimization of the
acquisition function—which is especially common in higher-dimensional search spaces—can lead to
misleading stopping signals. To handle this, we use a debounce strategy, requiring the stopping rule
to consistently indicate stopping over several consecutive iterations before stopping optimization.

4 Experiments

To evaluate our proposed PBGI/LogEIPC stopping rule, we design three complementary sets of
experiments that progressively assess its behavior. First, we consider an idealized, low-dimensional
setting where the Gaussian process model exactly matches the true objective: this lets us isolate
the rule’s behavior in the absence of any modeling or optimization error. Then, we move to an
8-dimensional synthetic problem and evaluate PBGI/LogEIPC stopping rule when each acquisition-
function minimization must be approximated via a numerical optimizer. Finally, we test in practical
scenarios with potential model mismatch, using the LCBench hyperparameter tuning benchmark
and the NATS neural architecture size search benchmark. We compare the performance of different
acquisition function and stopping rule pairs, which we describe next.

Acquisition functions. We consider four common acquisition functions that were discussed in
Section 2: log expected improvement per cost (LogEIPC), Pandora’s Box Gittins Index (PBGI), lower
confidence bound (LCB), and Thompson sampling (TS)—chosen for their competitive performance,
computational efficiency, and close connections to existing stopping rules.

Baselines. We compare the proposed PBGI/LogEIPC stopping rule against several stopping rules
from prior work: UCB-LCB [17], LogEIPC-med [11], SRGap-med [11], and PRB [25]. Additionally,
we include two simple heuristics used in practice: convergence and GSS. UCB-LCB stops once the
gap between upper and lower confidence bounds falls below a configurable threshold θ, LogEIPC-
med stops when the log expected improvement per cost drops beneath log(η) plus the median of its
initial T values, SRGap-med stops when the simple-regret gap declines below χ times the median of
its initial T values, PRB triggers once a probabilistic regret bound satisfies the regret tolerance ε and
confidence δ parameters, convergence stops as soon as the best observed value remains unchanged
for w iterations, and GSS stops if the recent improvement is less than ϕ × IQR over the past w
trials where IQR denotes the inter-quartile range of current observations. In addition, we consider
hindsight-optimal, which picks the true best stopping point in hindsight, as this gives a lower bound
on cost-adjusted simple regret.

In our experiments, unless specified otherwise, we follow parameter values recommended in the
literature, and set θ = 0.01, η = 0.01, χ = 0.01, T = 20, ϵ = 0.05, δ = 0.05, w = 5, and ϕ = 0.01.
Each experiment is repeated with 50 random seeds to assess variability, and we report the mean with
error bars (2 times the standard error) for each stopping rule. Each trial (i.e., a run with a distinct
random seed) is capped at a fixed number of iterations; if a stopping rule is not triggered within this
limit, the stopping time is set to the cap. Details on the iteration cap are provided in Appendix B.

4.1 Bayesian Regret

We first evaluate our cost-aware stopping rule in a controlled synthetic setting, where the ground-truth
optima are known. Specifically, we sample objective functions from Gaussian processes with Matérn
5/2 kernels with length scale 0.1, defined over spaces of dimension d = 1 and d = 8. We consider a
variety of evaluation cost structures, including uniform costs, linearly increasing costs in terms of
parameter magnitude, and periodic costs that vary non-monotonically over the domain.

In the one-dimensional experiments, we perform exhaustive grid search over [0, 1] to isolate the
effect of stopping behavior from numerical optimization. In the 8-dimensional setting, due to
instability from higher dimensionality, we apply Polyak averaging [20] with a window size of 20
when computing the stopping condition for the LogEIPC/PBGI rule. See Figure 6 in Appendix B for
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Figure 2: Comparison of cost-adjusted regret of different combinations of acquisition functions
and stopping rules in 1-dimensional Bayesian regret experiments. Objective functions are sampled
from a Gaussian process with a Matérn-5/2 kernel, using a linear cost function and cost-scaling
factors λ = 0.1, 0.01, 0.001. We see that the matched PBGI/LogEIPC combinations perform best
for λ = 0.1 and 0.01, while slightly suboptimal than various acquisition functions paired with PRB
at λ = 0.001. We also see that matched PBGI consistently achieves a cost-adjusted regret which is
close to the hindsight optimal.

an illustration. We omit PRB in the 8D experiment due to its high computational overhead. More
details on our experiment setup, and computational considerations are provided in Appendix C.

Figure 2 shows a comparison of cost-adjusted regret for acquisition function + stopping rule pairing
with different cost-scaling factors λ in the 1-dimensional setting. As can be observed from the
plot, LogEIPC/PBGI stopping rule pairing with LogEIPC or PBGI acquisition function delivers
competitive performance for each cost-scaling factor λ, and is particularly strong in handling high
cost scenarios—here, those with large λ.

In the 1-dimensional setting, the Bayesian optimization problem is relatively straightforward and all
acquisition functions attain nearly identical hindsight optima, independent of cost scale or cost type.
In the 8-dimensional experiments, however, clear gaps emerge: Figure 3 compares cost-adjusted
regret under uniform, linear, and periodic cost regimes. Under uniform and linear costs, LogEIPC,
PBGI, and LCB perform similarly and substantially outperform Thompson Sampling (TS), while
in the periodic case, LogEIPC and PBGI outperform LCB and TS. In every regime, combining
our stopping rule with LogEIPC, PBGI, or LCB yields regret levels nearly matching the hindsight
optimum. This shows the PBGI/LogEIPC stopping rule to be relatively robust against challenges in
acquisition function optimization. Further discussion of our experiments across all cost types and
cost-scaling factor can be found in Appendix C.

4.2 Empirical Benchmarks: Hyperparameter Optimization and Neural Architecture Search

Benchmarks. We consider two AutoML benchmarks: LCBench [28] and NATS-Bench [7].

LCBench provides training data of 2,000 hyperparameter configurations evaluated on multiple
OpenML datasets. In the unknown-cost experiments, we consider the full training (at 200 epochs)
time as the cost. For the known-cost setting, we observe that training time to scale approximately
linearly with the number of model parameters. Based on a linear regression fit (see Appendix B), we
adopt 10−3 × p, where p is the number of model parameters, as a proxy of training time.

NATS-Bench defines a search space of 32,768 neural architectures varying in channel sizes across
layers, evaluated on cifar10-valid, cifar100, and ImageNet16-120. As in LCBench, for the known-
cost experiments, we approximate the full training + validation time at 90 epochs using αF + β,
where F is the number of FLOPs (floating point operations); see Appendix B for details.
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Figure 3: Comparison of cost-adjusted simple regret of different combinations of acquisition functions
and stopping rules in 8-dimensional Bayesian regret experiments. Objective functions are sampled
from a Gaussian process with a Matérn-5/2 kernel, and three different cost functions scaled by
λ = 0.01. Here, the PBGI/LogEIPC stopping rule consistently yields the lowest cost-adjusted regret
that is close to hindsight optimal, when paired with LogEIPC, PBGI, and LCB.
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Figure 4: Comparison of cost-adjusted simple regret across different combinations of acquisition
functions and stopping rules on LCBench. Objective functions are validation errors on three classi-
fication tasks, with proxy runtime as the cost function and a cost-scaling factor of λ = 10−4. The
matched PBGI combination consistently performs best on higgs and volkert, and second-best on
Fashion-MNIST, closely approaching the hindsight optimal in all cases. Notably, in addition to PBGI
and LogEIPC, Thompson Sampling also performs competitively, and the PBGI/LogEIPC stopping
rule remains effective when paired with it.

Metrics. We report the mean and error bars (2 times standard error) of the cost-adjusted simple
regret, where we consider the evaluation costs to be some cost-scaling factor λ (see Section 3.2)
multiplied with cumulative runtime. Simple regret is computed as the difference between (a) test
error of the configuration with best validation error at the stopping time and (b) the best test error
over all configurations. We present the results using proxy runtime here, deferring the results using
actual runtime—an unknown-cost scenario—to Appendix C. Additionally, we report the means and
error bars of cumulative runtime and test error pairs at stopping in Appendix C.
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Figure 5: Comparison of cost-adjusted simple regret across different combinations of acquisition
functions and stopping rules on NATS-Bench. Objective functions are validation errors on three
image classification tasks, with proxy runtime as the cost and a cost-scaling factor of λ = 10−4.
Our stopping rule consistently approaches the hindsight optimal, though it is not always the top
performer—GSS and Convergence can achieve lower regret. In contrast, the remaining stopping rules
are rarely triggered within the 200-iteration budget. See Table 1 in Appendix C.3 for details.

Experiment results. Figure 4 and Figure 5 present cost-adjusted regret for combinations of acqui-
sition function and stopping rule on classification tasks from LCBench and NATS, with cost-scaling
factor λ = 10−4. Additional results under different cost-scaling factors and the unknown-cost setting
are provided in Appendix C, along with visual comparisons between adaptive and fixed-iteration
stopping. Overall, our PBGI/LogEIPC stopping rule consistently performs strongly in terms of
cost-adjusted simple regret, particularly when paired with the PBGI acquisition function. We also
report, in Table 1 of Appendix C, how often each stopping rule fails to trigger within the 200-
iteration cap: baselines such as SRGap-med and UCB-LCB often fail to stop early—particularly on
NATS—whereas our PBGI/LogEIPC stopping rule reliably stops before the cap.

As we transition from model match to model mismatch, where the true objective function does not
align perfectly with the Gaussian process prior, we find that the PBGI/LogEIPC stopping rule, when
paired with the PBGI acquisition function, continues to deliver performance closest to the hindsight
optimum. However, pairing the same stopping rule with the LogEIPC acquisition function becomes
noticeably less competitive on LCBench datasets. This degradation appears to stem from the relative
advantage of PBGI over LogEIPC in higher dimensions or misspecified settings: we illustrate this
in more detail in Appendix C, which shows that the PBGI acquisition function maintains stronger
performance under mis-specification, thus contributing to the improved overall cost-adjusted regret.
These results highlight that, while our stopping rule is broadly robust, the choice of acquisition
function remains an important consideration when facing model mismatch.

5 Conclusion

We develop the PBGI/LogEIPC stopping rule for Bayesian optimization with varying evaluation costs
and adaptive stopping. Paired with either the PBGI or LogEIPC acquisition functions, it (a) comes
with a theoretical guarantee bounding the expected cumulative cost (Theorem 1), and (b) shows
strong empirical performance in terms of cost-adjusted simple regret (Section 4). We believe our
framework can be extended to settings involving noisy or multi-fidelity evaluations, batched queries,
and alternative objective formulations—for instance, applying a sigmoid transformation to test error
rather than a linear one, to reflect real-world considerations such as a user’s willingness to adopt
models whose performance may change sharply once test error falls below a certain threshold.
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A Theoretical Analysis and Calculations

In this section we provide a restatement involving the cost-scaling factor λ and the proof of Theorem 1,
as well as additional discussions on its implication in budget constraint setting.

Theorem 1. Consider minimizing objective function f , drawn from a stochastic process with constant
mean µ, over a compact, non-empty domain X . Let c be a known cost function with finite mean
and λ be the cost-scaling factor. Assume the algorithm begins with one initial evaluation at a
pre-selected point x1 in X with cost C := c(x1), and subsequently runs either the PBGI or LogEIPC
acquisition function with the PBGI/LogEIPC stopping rule. Let the stopping time be defined as
τ := mint≥1

{
maxx∈X α

LogEIPC
t (x) ≤ 0

}
. Let U := µ− E[minx∈X f(x)] <∞ denote the upper

bound on expected cumulative improvement E
[∑τ

t=2(y
∗
1:t−1 − y∗1:t)

]
. Then the expected cumulative

cost up to stopping is bounded by

E

[
τ∑
t=1

c(xt)

]
≤ C +

U

λ
. (15)

Proof. We treat the two policies (i.e., the two acquisition function + stopping rule pairs) together
and write Ft = σ({xi, yi}ti=1) for the filtration generated by the observations. Here σ refers to
σ-algebra. Since we are minimizing, the one–step improvement after iteration t is (y∗1:t−1 − y∗1:t).
Since we initialize at the prior mean, we have E[y∗1 ] := µ and the quantity y∗1 −minx∈X f(x) has
finite expectation U <∞.

Step 1: A pointwise lower bound on the expected improvement before stopping. Denote the
posterior expected improvement function as αEI

t (x) := EIf |x1:t,y1:t (x; y
∗
1:t). While stopping hasn’t

occurred (t < τ ), by the stopping criteria definition, maxx∈X α
EI
t (x)/c(x) ≥ λ. Hence there exists

at least one point with αEI
t (x)/c(x) ≥ λ.

Policy (A) PBGI. For each x we defined a threshold αPBGI
t (x) by EIf |x1:t,y1:t

(
x;αPBGI

t (x)
)
=

λc(x). Since EIf |x1:t,y1:t is increasing in its first argument,

y∗1:t ≥ αPBGI
t (x) ⇐⇒ αEI

t (x)/c(x) ≥ λ.

The existence of a point with ratio at least λ therefore implies that the set St := {x : y∗1:t−1 ≥
αPBGI
t (x)} is non-empty. PBGI chooses xt with the smallest threshold, and thus

αEI
t (xt) = EIf |x1:t,y1:t (x; y

∗
1:t) ≥ EIf |x1:t,y1:t

(
x;αPBGI

t (x)
)
= λ c(xt). (16)

Policy (B) (Log)EIPC. By definition xt maximizes log
(
αEI
t (x)/c(x)

)
, and thus αEI

t (xt) ≥ λ c(xt).

Thus for both policies,
αEI
t (xt) ≥ λ c(xt), for all t ≤ τ. (17)

Step 2: The total expected improvement is at most U . Set ∆t := y∗1:t−1 − y∗1:t ≥ 0 for t ≤ τ .
Conditional on Ft−1 and the choice of xt,

E[∆t | Ft−1, xt] = αEI
t (xt).

Taking expectations and summing up to τ ,

E

[
τ∑
t=2

αEI
t (xt)

]
= E

[
τ∑
t=2

∆t

]
= E [y∗1 − y∗1:τ ] .

Since we always have y∗1:τ ≥ minx∈X f(x), then

E [y∗1 − y∗1:τ ] ≤ µ− E
[
min
x∈X

f(x)

]
= U.
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Step 3: Expected cost control. Summing (17) over t ≤ τ , taking expectation, and applying the
result of Step 2, we have

λE

[
τ∑
t=2

c(xt)

]
≤ E

[
τ∑
t=2

αEI
t (xt)

]
≤ U.

We conclude that

E

[
τ∑
t=1

c(xt)

]
= E[c(x1)] + E

[
τ∑
t=2

c(xt)

]
≤ C +

U

λ
,

which completes the proof.

Extension to other acquisition functions. From the proof, we see that this bound extends to any
acquisition function that satisfies the condition (17). That is, the result holds more generally to
acquisition functions beyond PBGI and LogEIPC, as long as each selected point ensures sufficient
expected improvement relative to its cost before stopping at time τ .

Implications for budget-constrained settings and PBGI-D. Suppose the user specifies a fixed
budget B. Theorem 1 suggests that setting cost-scaling factor λ = U/B when using either PBGI or
LogEIPC policy ensures that the expected cumulative cost is always within the budget. If this choice
of λ proves conservative in practice—resulting in lower-than-anticipated spending—it can be paired
with the PBGI-D rule introduced by Xie et al. [26], which starts with λ = λ0 and reduces λ by half
each time stopping is triggered. Using λ0 = U/B as the initial λ value ensures that the initial fixed-λ
phase of PBGI-D aligns with the budget in expectation, and provides a principled initial value λ0
before adaptive decay starts.

B Experimental Setup

All experiments are implemented based on BoTorch [4]. Each Bayesian optimization procedure is
initialized with 2(d+1) random samples, where d is the dimension of the search domain. For Bayesian
regret experiments, we follow the standard practice to generate the initial random samples using a
quasirandom Sobol sequence. For empirical experiments, we randomly sample configuration IDs
from a fixed pool of candidates—2,000 for LCBench and 32,768 for NATS-Bench. All computations
are performed on CPU.

Each experiment is repeated with 50 random seeds, and we report the mean with error bars (2 times
the standard error) for each stopping rule. We also impose a cap on the number of iterations: 100 for
1D Bayesian regret, 500 for 8D Bayesian regret, and 200 for empirical experiments. If a stopping
rule is not triggered before reaching this cap, we treat the stopping time as equal to the cap.

Gaussian process models. For all experiments, we follow the standard practice to apply Matérn
kernels with smoothness 5/2 and length scales learned from data via maximum marginal likelihood
optimization, and standardize input variables to be in [0, 1]d. For empirical experiments, we stan-
dardize output variables to be zero-mean and unit-variance, but not for Bayesian regret experiments.
In this work, we consider the noiseless setting and set the fixed noise level to be 10−6. In the
unknown-cost experiments, we follow Astudillo et al. [2] to model the objective and the logarithm of
the cost function using independent Gaussian processes.

Acquisition function optimization. For the 1D Bayesian regret experiments, we optimize over
10,001 grid points. For the 8D Bayesian regret experiment, we use BoTorch’s ’gen_candidates_torch’,
a gradient-based optimizer for continuous acquisition function maximization. For the empirical exper-
iments, since LCBench and NATS-Bench provide only 2,000 and 32,768 configurations respectively,
we optimize the acquisition function by simply applying an argmin/argmax over the acquisition
values of the unevaluated configurations, without using any gradient-based methods.

Acquisition function and stopping rule parameters. For PBGI, we follow Xie et al. [26] to
compute the Gittins indices using 100 iterations of bisection search without any early stopping or
other performance and reliability optimizations.
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Figure 6: Comparison of the raw and Polyak-averaged PBGI/LogEIPC stopping rule statistic (equal
to the LogEIPC acquisition value) in synthetic 8D experiments for multiple acquisition functions,
with linear cost and stopping thresholds at log(0.1), log(0.01) and log(0.001). Left: The unaveraged
statistic exhibits large, high-frequency fluctuations due to the difficulty of acquisition optimization in
high dimensions. Right: Applying Polyak averaging (window=20) smooths these wiggles, yielding a
more stable stopping signal.

For UCB/LCB-based acquisition functions and stopping rules, we follow the original GP-UCB paper
Srinivas et al. [23] and the choice in UCB/LCB based stopping rules [17, 11] to use the schedule
βt = 2 log(dt2π2/6δ), where d is the dimension. We also adopt their choice of δ = 10−1 and a
scale-down factor of 5.

For SRGap-med, which stops when the simple regret gap falls below χ times the median of its initial
T = 20 values, we set χ = 0.1 in the empirical experiments, instead of the default value χ = 0.01
recommended in the literature. This adjustment is made because SRGap-med tends to stop too late
on the LCBench datasets, likely due to the relatively small initial regret values and insignificant drop
over time.

For PRB, we follow Wilson [25] to use the schedule Nt = max(⌈64 ∗ 1.5t−1⌉, 1000) for number of
posterior samples, risk tolerance δ = 0.05. The error bound ϵ is set to be 0.1 for Bayesian regret
experiments and 0.5% of the best test error (i.e., mis-classification rate) among all configurations for
the empirical experiments.

For the 8D Bayesian regret experiments, we apply Polyak averaging [20] over 20 iterations to
mitigate oscillations in the optimizer. Figure 6 illustrates the challenges these oscillations pose
when computing stopping rule statistics and shows the improvement with Polyak averaging. For
consistency, we also apply 20-iteration averaging to the GSS and Convergence baselines.

Omitted baselines. We omit the PRB baseline for the 8D Bayesian regret experiment due to its
high computational cost — requiring up to global optimum computations of 1000 sample paths per
iteration. We also omit the KG acquisition function and stopping rule for the same reason, as they are
shown to be computationally intensive in the runtime experiments of Xie et al. [26].

Objective functions: Bayesian regret. In all Bayesian regret experiments, each objective function
f is sampled from a Gaussian process prior with a Matérn 5/2 kernel and a lengthscale of 0.1, using a
different seed.

Objective functions: empirical. In the empirical experiments, the validation error (scaled out
of 100) is used as the objective function during the Bayesian optimization procedure, while the
cost-adjusted simple regret is reported based on the corresponding test error.
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Figure 7: Surface plots of cost functions over [0, 1]2: (Left) Uniform cost of 1 across domain.
(Middle) Normalized linear cost increasing with the mean of x1 and x2. (Right) Periodic cost with
α = 2, β = 2, normalized by Bessel-based factor.

Cost functions: Bayesian regret. In Bayesian regret experiments, we consider three types of
evaluation costs: uniform, linear, and periodic. These costs are normalized such that Ex∈[0,1]d [c(x)]
is approximately 1 and their expressions (prior to cost scaling) are given below.

In the uniform cost setting, each evaluation incurs a constant cost of 1.

In the linear cost setting, the cost increases proportionally with the average coordinate value of the
input:

linear_cost(x) =
1 + 20 ·

(
1
d

∑d
i=1 xi

)
11

.

In the periodic cost setting, the evaluation cost fluctuates across the domain. Following [2], we define
the periodic cost as

periodic_cost(x) =
exp

(
α
d

∑d
i=1 cos (2πβ(xi − x∗i ))

)
[
I0

(
α
d

)]d ,

where x∗i denotes the coordinate of the global optimum of f , and I0 is the modified Bessel function
of the first kind, which acts as a normalization constant. We set α = 2 and β = 2 to induce noticeable
variation in cost across the domain, while ensuring that costly evaluations can still be worthwhile.

A visualization of the three cost functions is provided in Figure 7.

Cost functions: empirical. In the unknown-cost experiments, we treat runtime, i.e., the provided
full model training time (200 epochs for LCBench and 90 epochs for NATS) as evaluation costs (prior
to cost-scaling).

In the known-cost experiments, for LCBench, we use 0.001 times the number of model parameters
as a proxy for runtime. This proxy is motivated by our observation of an approximately linear
relationship between the number of model parameters and the actual runtime, with slope close to
0.001 (see Figure 8). Importantly, the number of model parameters can be computed in advance,
before the Bayesian optimization procedure, based on the network structure and classification task, as
we explain in detail below.

In a feedforward neural network like shapedmlpnet with shape ‘funnel’, the model parameters are
determined by input size (number of features), output size (e.g., number of classes), number of layers,
size of each layer. The input size and output size are given by:

• Fashion-MNIST:

– Input dimension: 784 (each image has 28×28 pixels, flattened into a vector of length
784)

– Number of Output Features (output_feat): 10 (corresponding to 10 clothing categories)

• Adult:
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Figure 8: Empirical relationship between the number of model parameters and runtime for three
LCBench datasets. Each subplot shows a scatter plot of actual runtime (y-axis) against number
of model parameters (x-axis), along with a fitted linear regression line. The observed linear trend
supports using 0.001 times the number of model parameters as a proxy for runtime. For Fashion-
MNIST and volkert, the fitted slopes are close to 0.001. The slope for higgs is slightly higher, possibly
due to a few outliers.

– Input Dimension: 14 (the dataset comprises 14 features, including both numerical and
categorical attributes)

– Number of Output Features: 1 (binary classification: income > 50K or ≤ 50K)

• Higgs:

– Input Dimension: 28 (each instance has 28 numerical features)
– Number of Output Features: 1 (binary classification: signal or background process)

• Volkert:

– Input Dimension: 147 (the dataset consists of 147 features)
– Number of Output Features: 10 (corresponding to 10 classes)

The number of layers (num_layers) and size of each layer (max_unit) can be obtained from the
configuration. With these information, we can compute the total number of model parameters
(weights and biases) based on the layer-wise structure as follows:

layer_paramsi→i+1 = layeri · layeri+1 + layeri+1 (weights + biases) (18)

model_params =
L−1∑
i=0

layer_paramsi→i+1 (19)

where layer0 = input_dim, layerL = output_feat (20)

Similarly for NATS-Bench, we use α × #FLOPs + β as a proxy for runtime (see Figure 9 for a
visualization of the linear relationship), where the number of FLOPs (floating point operations) can
also be computed in advance, as it is determined solely by the architecture’s structure and the fixed
input shape. Specifically, for cifar10-valid, we set α = 1, β = 400; for cifar100, we set α = 2,
β = 550; and for ImageNet16-120, we set α = 1, β = 1000.

Specifically, FLOPs are precomputed and stored for each architecture in NATS-Bench. Since each
architecture corresponds to a deterministic computational graph and all inputs (e.g., CIFAR-10 images)
have a fixed shape, the FLOPs required for a forward pass can be calculated analytically—without
executing the model on data.

C Additional Experiment Results

In this section, we present additional experimental results to further evaluate the performance of
different acquisition-function–stopping-rule combinations across various settings. We also include
alternative visualizations to aid interpretation of the results.
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Figure 9: Empirical relationship between the number of FLOPs and runtime for three NATS-
Bench datasets. Each subplot shows a scatter plot of actual runtime (y-axis) against number of
FLOPs (x-axis), along with a fitted linear regression line. The observed linear trend supports using
α×#FLOPs + β as a proxy for runtime.

C.1 Runtime Comparison

First, we compare the runtime between our PBGI/LogEIPC stopping rule with several baselines. We
measure the CPU time (in seconds) of the computation of the stopping rule, excluding the acquisition
function computation and optimization.

From results in Figure 10 we can see that our PBGI/LogEIPC stopping rule is as efficient as SRGap-
med and UCB-LCB. In contrast, PRB is significantly more time-consuming, as it involves optimizing
over up to 1000 samples.

C.2 Order of Stopping and Posterior Updates

Following the discussions in Section 3, we always compute our proposed stopping rule with respect
to the optimal acquisition function value of the next round—namely, the one which is obtained after
posterior updates have been performed. One could alternatively consider checking the stopping
criteria before posterior updates, which is backward-looking rather than forward-looking. Figure 11
provides an empirical comparison between the two choices, showing that stopping after the posterior
update leads to stronger empirical performance.

This suggests that the theoretical guarantee for the Gittins index policy in the correlated Pandora’s
Box setting by Gergatsouli and Tzamos [10], which is based on the before-posterior-update stopping,
could potentially be improved by adopting the after-posterior-update stopping.

C.3 Additional Experiment Results: Empirical

This subsection presents additional experiment results on hyperparameter optimization over the three
LCBench datasets and neural architecture size search over the three NATS datasets.

Number of trials where stopping fails. We count the number of trials in which a stopping rule
fails to trigger within our iteration cap of 200 and present the results in Table 1. From the table, we
observe that on datasets from the NATS benchmark, regret-based and acquisition-based stopping
rules—except for ours—often fail to stop early. On LCBench datasets, some regret-based stopping
rules such as SRGap-med and UCB-LCB also frequently exceed the cap. In contrast, our stopping
rule consistently stops early, which aligns with our theoretical result in Theorem 1.

Alternative visualization: cost-adjusted regret vs iteration. We provide an alternative visual-
ization of cost-adjusted simple regret by plotting its mean and error bars at fixed iterations, along
with the mean and error bars of the stopping iterations for each rule. This allows us to compare the
performance of adaptive stopping rules not only against the hindsight-optimal adaptive stopping but
also against the hindsight-optimal fixed-iteration stopping.
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Figure 10: Evolution of per-iteration computation time (in log scale) for different stopping stop-
ping rules when paired with six acquisition policies on the 8-dimensional Bayesian regret bench-
mark. Each subplot shows the average runtime (in seconds) over 50 iterations under one acqui-
sition function—LCB, Thompson Sampling, LogEIPC, PBGI(λ = 10−1), PBGI(λ = 10−2), and
PBGI(λ = 10−3). Curves correspond to four stopping criteria: our PBGI/LogEIPC stopping rule,
SRGap-med, UCB–LCB, and the probabilistic regret bound (PRB). Convergence and GSS can be
applied using only the best observed value and thus require no additional computation time, thus
they are omitted here. LogEIPC-med relies on the same underlying statistical computations as the
LogEIPC rule, and therefore its runtime is not measured separately. The results should that PRB
incurs significant computational overhead compared to other stopping rules.

Table 1: Number of trials (out of 50) where each stopping rule failed to trigger within 200 iterations,
for each dataset in the LCBench (first three) and NATS (last three) benchmarks and each acquisition
function. Results are identical across acquisition functions.

Dataset PBGI LogEIPC-med SRGap-med UCB-LCB GSS Convergence PRB

Fashion-MNIST 0 0 47 50 0 0 0
higgs 0 0 50 50 0 0 0
volkert 0 0 50 50 0 0 0

Cifar10 0 48 50 50 0 0 49
Cifar100 0 50 50 50 0 0 50
ImageNet 0 50 50 50 0 0 45

As shown in the empirical setting in Figure 12-14, cost-adjusted regret generally decreases in the
early iterations and then increases. The turning point is exactly the hindsight-optimal fixed-iteration
stopping point, and our PBGI/LogEIPC stopping rule consistently performs close to this optimum,
particularly when paired with the PBGI acquisition function.

Cost model mismatch: proxy runtime vs actual runtime. In the known-cost setting of hyper-
parameter tuning, a practical approach is to use a proxy for runtime as the evaluation cost during
the Bayesian optimization procedure. In our case, we use the number of model parameters scaled
by a constant factor, which can be known in advance and has been shown to correlate well with
the actual runtime. However, for reporting performance, one may prefer to use the actual runtime
to better reflect real-world cost. To assess the impact of this cost model mismatch, we compare
the cost-adjusted simple regret obtained when evaluation costs are computed using either the proxy
runtime or the actual runtime. As shown in Figure 15 and Figure 16, our PBGI/LogEIPC stopping
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Figure 11: Illustration of a single draw from a Matérn-5/2 Gaussian process on [0, 1] with lengthscale
0.1, optimized using PBGI acquisition function under uniform cost and cost-scaling factor λ = 0.01.
We compare two variants of PBGI stopping rules: the before-posterior-update (this-round) stopping
rule and the after-posterior-update (next-round) stopping rule. Left: The latent objective function
(solid gray) and evaluation sequences for before-posterior-update stopping (blue circles) and after-
posterior-update stopping (orange crosses). The dotted blue line and the dashed orange line mark the
best observed value under each respective rule. Right: Cost-adjusted regret for each stopping rule.
In this example, after-posterior-update stopping achieves strictly lower cost-adjusted regret despite
performing more evaluations.

rule remains close to the hindsight optimal even when there is a mismatch, although its ranking may
shift slightly (e.g., from best to second-best on the higgs dataset).

Unknown-cost. As discussed in Section 3.2, there are two variants of the (Log)EIPC acquisition
functions and corresponding stopping rules under the unknown-cost setting. We refer to the variant
using (13) as (Log)EIPC-inv, and the one using (14) as (Log)EIPC-exp. Recall that while (Log)EIPC-
exp is equivalent to PBGI as a stopping rule (but not as an acquisition function), (Log)EIPC-inv differs
from both in terms of both the acquisition function and the stopping rule. As shown in Figure 17, the
results are similar to those in the known-cost setting.

C.4 Additional Experiment Results: Bayesian Regret

In this section, we present the complete synthetic results. Figures 18 to 20 show the 1D experiments,
and Figures 21 to 23 show the 8D experiments. Each figure corresponds to one cost setting (uniform,
linear or periodic) and three values of the cost-scaling factor, λ ∈ 10−1, 10−2, 10−3. In all of the
experimental results, we observe that PBGI/LogEIPC acquisition function + PBGI/LogEIPC stopping
achieves cost-adjusted regret that is not only competitive with the baselines, but is also competitive
regarding the best in hindsight fixed iteration stopping and often competitive even comparing to
hindsight optimal stopping. These results indicate that our automatic stopping rule can replace
manual selection of stopping times without loss in performance. Figures 18 to 23 also show that our
PBGI/LogEIPC stopping rule outperforms other baselines when the cost-scaling factor λ is large,
indicating that it’s an especially suitable stopping criteria when evaluation is expensive.
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Figure 12: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules on the Fashion-MNIST dataset. The objective function is the validation
error, and the evaluation cost is the proxy runtime, scaled by three different cost-scaling factors
λ = 10−3, 10−4, 10−5. We can see that the PBGI/LogEIPC stopping rule consistently achieves
cost-adjusted regret close to the hindsight optimal adaptive stopping as well as the hindsight optimal
fixed-iteration stopping when paired with the PBGI acquisition function, though not always the best.
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Figure 13: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules on the higgs dataset. The objective function is the validation error,
and the evaluation cost is the proxy runtime, scaled by three different cost-scaling factors λ =
10−3, 10−4, 10−5. We can see that the PBGI/LogEIPC stopping rule consistently achieves the best
cost-adjusted regret when paired with the LogEIPC, PBGI, or TS acquisition function, particularly
with PBGI. These combinations not only approach the hindsight optimal adaptive stopping but also
perform comparably to the hindsight optimal fixed-iteration stopping.
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Figure 14: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules on the volkert dataset. The objective function is the validation error,
and the evaluation cost is the proxy runtime, scaled by three different cost-scaling factors λ =
10−3, 10−4, 10−5. We can see that the PBGI/LogEIPC stopping rule consistently achieves the cost-
adjusted regret close to hindsight optimal adaptive stopping and hindsight optimal fixed-iteration
stopping when paired with the PBGI or TS acquisition function, particularly with PBGI.
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Figure 15: Comparison of cost-adjusted simple regret when using scaled proxy runtime versus scaled
actual runtime as the evaluation cost on LCBench. While our PBGI/LogEIPC stopping rule performs
slightly worse under actual runtime (e.g., dropping from best to second-best on the higgs dataset),
likely due to cost model mismatch, it remains close to the hindsight optimal in all cases.
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Figure 16: Comparison of cost-adjusted simple regret when using scaled proxy runtime versus
scaled actual runtime as the evaluation cost on NATS-Bench. The results are nearly identical to the
cost-model-match setting.
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Figure 17: Cost-adjusted regret under the unknown-cost setting. The results are similar to those in
the known-cost setting.
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Figure 18: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules in the 1D Synthetic experiments, with cost-scaling factor λ =
101, 10−2, 10−3 and under uniform cost. The dashed line in each subplot represent fixed itera-
tion stopping (e.g., the y-axis value of the line at iteration 50 represent the cost-adjusted regret when
always stopping at iteration 50).
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Figure 19: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules in the 1D Synthetic experiments, with cost-scaling factor λ =
101, 10−2, 10−3 and under linear cost. The dashed line in each subplot represent fixed iteration
stopping (e.g., the y-axis value of the line at iteration 50 represent the cost-adjusted regret when
always stopping at iteration 50).
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Figure 20: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules in the 1D Synthetic experiments, with cost-scaling factor λ =
101, 10−2, 10−3 and under periodic cost. The dashed line in each subplot represent fixed itera-
tion stopping (e.g., the y-axis value of the line at iteration 50 represent the cost-adjusted regret when
always stopping at iteration 50).
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Figure 21: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules in the 8D Synthetic experiments, with cost-scaling factor λ =
101, 10−2, 10−3 and under uniform cost. The dashed line in each subplot represent fixed itera-
tion stopping (e.g., the y-axis value of the line at iteration 50 represent the cost-adjusted regret when
always stopping at iteration 50).
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Figure 22: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules in the 8D Synthetic experiments, with cost-scaling factor λ =
101, 10−2, 10−3 and under linear cost. The dashed line in each subplot represent fixed iteration
stopping (e.g., the y-axis value of the line at iteration 50 represent the cost-adjusted regret when
always stopping at iteration 50).
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Figure 23: Comparison of cost-adjusted simple regret of different combinations of acquisition
functions and stopping rules in the 8D Synthetic experiments, with cost-scaling factor λ =
101, 10−2, 10−3 and under periodic cost. The dashed line in each subplot represent fixed itera-
tion stopping (e.g., the y-axis value of the line at iteration 50 represent the cost-adjusted regret when
always stopping at iteration 50).
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